

ISSN (p): 2394-3912 ISSN (e): 2395-9369

<mark>त्रैमासिक 12(3)</mark> जुलाई-सितम्बर, 2025 Technical articles are peer reviewed

जनविज्ञान की बहुभाषाई पत्रिका

KAHAAR

A Multilingual People Science Magazine

प्रोफेसर एच.एस. श्रीवास्तव फाउण्डेशन फॉर साइंस एण्ड सोसाइटी, त्रखनऊ (www.phssfoundation.org)

सह-प्रकाशक

पृथ्वीपुर अभ्युदय सिमिति, लखनऊ (www.prithvipur.org)

PHSS Foundation Awards Announced

The PHSS Foundation Awardees for 2024-2025

Sr. No.	Name of the Award	Name of the Awardees	Photo of Awardees
1	PHSS Foundation Life Time Achievement Award	Professor Pramod Tandon NASI Honorary Scientist, Former Professor of Botany, Vice-Chancellor, NEHU, Shillong and CEO, Biotech Park, Lucknow, U.P	
2	PHSS Foundation Award for Science Communication	Professor Surya Kant Head, Deptt. of Respiratory Medicine, KGMU, Lucknow	
		Ms. Jyoti Sinha 'Kiran' Writer, Social Worker & Cultural Activist, Lucknow, UP	
3	PHSS Foundation Woman Leadership Award	Dr. Meenu Khare Ex Deputy Director and Programme Head, All India Radio, Lucknow, U.P.	
4	Dr. P. K. Seth Memorial Award for Ecology and Environment	Dr. Syed G Dastager Senior Principal Scientist, NCIM Resource Centre, Biochemical Science Division, CSIR-National Chemical Laboratory, Pashan Road, Pune MH	
5	PHSS Foundation Young Scientist Award (Life Sciences, Environmental Sciences and Agriculture)	Dr. Pooja Sharma Helmholtz Centre for Environmental Research- UFZ, Germany	

No nominee was found suitable for PHSS Foundation Award for Social Contribution by the Selection Committee

कहार

जनविज्ञान की बहुभाषाई पत्रिका

त्रैमासिक, 12(3) जुलाई-सितम्बर, 2025

A Multilingual People Science Magazine

प्रधान संपादक

प्रोफेसर राणा प्रताप सिंह, लखनऊ

कार्यकारी सम्पादक

श्री कृष्णानन्द सिंह, लखनऊ

सह-सम्पादक

- डॉ. बसत माहेश्वरी, पेनरिथ, ऑस्ट्रेलिया
- डॉ. रूद्र प्रताप सिंह, आजमगढ़
- डॉ. निहारिका शंकर, नोएडा
- डॉ. अर्चना सिंह, ब्रैनफोर्ड (यू.एस.ए.)
- श्री आकाश वर्मा, लखनऊ
- श्री सुनीत कुमार यादव, मऊ
- श्री शुभम अभिषेक, धनवाद
- श्री पवन कुमार, लखनऊ

सम्पादक मण्डल

प्रोफेसर राकेश सिंह सेंगर, मेरठ

- श्री नरसिंह, देवरिया
- डॉ संजय सिंह, झांसी
- डॉ. मनोज गर्ग, लखनऊ
- डॉ. पीयूष गोयल, नई दिल्ली
- प्रोफेसर शिल्पी वर्मा, लखनऊ
- डॉ. सुधाकर तिवारी, कुशीनगर
- श्री मेराज उद्दीन सिद्दीकी, लखनऊ
- डॉ. अनुज कुमार सक्सेना, सीतापुर
- श्री आशीष सिंह, लखनऊ

सलाहकार मण्डल

प्रोफेसर सरोज कान्त बारिक, लखनऊ

- डॉ. प्रफुल्ल वी. साने, जलगाँव
- डॉ. राम सनेही द्विवेदी, लखनऊ
- डॉ. राजेन्दर सिंह जलपुरुष, भीखमपुरा
- डॉ. एस.सी. शर्मा, लखनऊ

प्रोफेसर शशिभूषण अग्रवाल, वाराणसी

- डॉ. वेदप्रकाश पाण्डेय, बालापार, गोरखपुर
- डॉ. सी. एम. नौटियाल, लखनऊ
- श्रीमती मधु, करमेल, यू. यस. ए.
- डॉ. सुमन कुमार सिन्हा, गोरखपुर
- डॉ. धीरज कुमार सिंह, नोएडा
- डॉ. रूद्रदेव त्रिपाठी, लखनऊ
- प्रोफेसर रणवीर दहिया, रोहतक

प्रोफेसर एन. रघुराम, दिल्ली

- डॉ. मनोज कुमार पटैरिया, नई दिल्ली
- डॉ. सिराज वजीह, गोरखपुर
- प्रोफेसर मालविका श्रीवास्तव, गोरखपुर
- इ. तरूण सेंगर, कारमेल, (यू.एस.ए.)
- श्री उपेन्द्र प्रताप राव, दुदही
- डॉ. मनीष सेंगर, रोहतक
- डॉ. पूनम अहलावत, चण्डीगढ़

आवरण फोटो

श्री प्रकाशवीर सिंह, लखनऊ

प्रबंध-संपादक

श्री अंचल जैन, लखनऊ

सोशल मीडिया

- श्री रणजीत शर्मा, लखनऊ
- श्री योगेन्द्र प्रताप सिंह, लखनऊ

टाइप सेटिंग और प्रोडक्शन

श्री जावेद अहमद, लखनऊ

घोषणा

लेखक के विचार से कहार टीम का सहमत होना जरूरी नहीं हैं। किसी रचना में उल्लेखित तथ्यात्मक भूल के लिए 'कहार' की टीम जिम्मेदार नहीं होगी।

कार्यालय: 04, पहली मंज़िल, एल्डिको एक्सप्रेस प्लाजा, शहीद पथ, उत्तरेटिया, रायबरेली रोड, लखनऊ—226 025, भारत

ईमेलः kahaarmagazine@gmail.com/

dr. ranapratap.59@gmail.com

सदस्यता / Subscription* (Print Copy)

एक प्रति रुपये 250 / — वार्षिक (4 प्रति) रुपये 1000 / — वार्षिक (10 प्रति) रुपये 9000 / — (100 प्रति) रुपये 22000 / — *(डाक व्यय सम्मिलत)

विज्ञापन के लिए संपर्क करें :--

Rs. 10,000/- Full Page (B/W) Rs. 6,000/- Half Page (B/W)

Rs. 15,000/- Full Page (Color) Back Cover

सहयोग राशि 'प्रोफेसर एच..एस. श्रीवास्तव फाउण्डेशन फॉर साइंस एण्ड सोसायटी : लखनऊ के नाम भेजे।

लखनऊ IFSC: CNRB0002900

लेखकों के लिए

वैचारिक रचनाओं में आवश्यक संदर्भ भी दें एवम् इन संदर्भों का विस्तार रचना के अंत में प्रस्तुत करें। अंग्रेजी रचनाओं का हिन्दी तथा हिन्दी सहित अन्य भाषाओं की रचनाओं का अंग्रेजी या हिन्दी में सारांश दें। मौलिक रचनाओं के के साथ रचना के स्वलिखित, मौलिक एवम् अप्रकाशित होने का प्रमाण पत्र दें। लेखक पासपोर्ट साइज फोटो भी भेजें। रचनाएँ English के Times New Roman (12 Point) और हिन्दी में मंगल / यूनिकोड में कन्वर्ट कर के भेजें। तस्वीर अलग से और फिगर नंबर के साथ भेजे।

कहार एक पारम्परिक मनुष्य वाहक के लिए प्राचीन देशज सम्बोधन है। कहार की तरह ही यह पत्रिका जानकारियों एवं लोगो के बीच सेतु बनने की कोशिश कर रहा है।

अनुक्रमणिका (Content)

क्र.स	. / Sl. No.	विषय / Topics	लेखक / Author	पृष्ठ/Page
1.	महिलाओं के बेहतर उपयोगी हैं श्री अन्न	स्वास्थ्य एवं पोषण सुरक्षा हेतु	रुपाली सिंह, रुद्र प्रताप सिंह एवं विश्व विजय सिंह	01
2.	ग्रामीण भारत में सत	त विकास के बढ़ते प्रयास	पीयूष गोयल	07
3.	भारत में भावी जल	संकट	अंकित तिवारी, शिवम सिंह, जगन्नाथ पाठक और महेंद्र प्रताप	13 सिंह
4.	हाइपेशिया		वेदप्रिय	15
5.	सामानों के ढेर में सु	ख तलाशता मन	राणा प्रताप सिंह	18
6.	सामाजिक उत्थान मे	मातृभाषा का योगदान	नरसिंहं	20
7.	सांस्कृतिक कूटनीति के भूमिका	में भारत आ भोजपुरिया पहचान	रवीन्द्र नाथ श्रीवास्तव 'परिचय दार	ਜ਼' 22
8.	संस्कृतः सनातन चेत	ना की दिव्य अभिव्यक्ति	शुभम बाजपेयी	24
9.	मौसम		रणवीर दहिया	25
10.	बाबा साहेब अंबेडकर		रणवीर दहिया	25
11.	संस्कृत एक प्राचीन	सेतु है	सुधाकर त्रिपाठी	26
12.		van and Modern Technology for the Sarni River in the Chambal Range	Manjal Sarandevot, Pooja Josh and Rajender Singh	ni 28
13.	•	arbati Sarni River for Biodiversity River Revival in Chambal Range	Manjal Sarandevot, Pooja Josh and Rajender Singh	ni 33
14.		zards of Chemical fertilizers and possible ways to prevent them	Shakti K. Prabhuji, Richa, Shail Pande, Gaurav K. Srivas and Madhulika Srivastava	40 tava
15.	•	nce: (The Evolution and Impact gence in Geospatial Technology)	Pallavi Singh; Mamta Shukla; Sudhakar Shukla	46
16.	Pollinators and Ag	ricultural Productivity	Richi Awasthi, Rudra Pratap S and Shivangi Maheshwari	ingh 50
17.	•	ulture Challenges and the tering a Green Future	Varnit Agarwal and Dr. R.S. So	engar 55
18.	Bihar's Farming B	oon: The Rise of Makhana	Monika Jha, DP Semwal, S.K. and Praveen Kumar Singh	Yadav 59

सम्पादकीय

ज्ञान विज्ञान की भाषा और भाषा का विवाद

ज्ञान—विज्ञान की आवश्यकता, ज्ञात सत्य को समझने और नए सत्य के अनुसन्धान के लिए होती है, और इसका उपयोग मानवीय चेतना, कौशल और क्षमताओं के विकास के साथ जीवन तथा समाज के सतत संचालन के लिए समयानुकूल मूल्य और व्यवहार तलाशने में होता है। शिक्षा का यही महत्व है। ज्ञान अनुभव, अनुसन्धान और अध्ययन की साधना से प्राप्त होता है। मानव जीवन और समाज के निर्माण तथा उसके सतत विकास के लिए विज्ञान, कौशल, नवाचार और दीक्षा जैसे भिन्न ज्ञान स्वरूपों की आवश्यकता होती है, जिसकी अपेक्षा शिक्षा, साधना और अनुसन्धान से साझे तौर पर की जाती है। ये जीवन पर्यन्त निरंतर चलने वाली प्रक्रियाएं हैं, जो व्यक्ति को सामाजिक, मानसिक और नैतिक रूप से विकसित होने में मदद करती हैं। ये एक परिवार, समाज, देश और विश्व के रूप में संगठित होने के लिए मनुष्य का मानवीय, सामाजिक और सांस्कृतिक अनुकूलन करती हैं।

मानवीय चेतना शिक्षा और अनुसन्धान से मिली नवीन जानकारियों के विश्लेषण से उपयोगी ज्ञान को छाँट—बीन कर व्यक्ति के भीतर धारण करती है। उपलब्ध प्रमाणिक ज्ञान से अपनी नई पीढ़ी में विशेष ज्ञान और कौशल विकसित करना, उनके व्यक्तित्व को उचित स्वरूप में गढ़ना और एक सामाजिक व्यवस्था में रहने के लिए अपनी नागरिक और सामाजिक जिम्मेदारियों और अधिकारों का ज्ञान देना शिक्षा का एक जरूरी काम है।

मन में सवाल उठते हैं, कि क्या शिक्षा और विद्या में कोई अंतर है ? ज्ञान, विज्ञान, कौशल, नवाचार और दीक्षा में क्या अंतर है ? विभिन्न शब्दों की एक अपनी विशिष्ट ध्विन और एक सूक्ष्म पर्यावरण होता है। शब्द, बोलियाँ और भाषाएँ अलग देश काल में अलग तरह के भावनात्मक, कामकाजी और सांस्कृतिक जरूरतों के हिसाब से अलग सन्दर्भ और अलग अर्थ में निर्मित और विकसित होती रहती हैं।

शिक्षा एक आधुनिक शब्द है। इसे अब धन कमाने के एक विशिष्ट औजार और आरामदेह साधन के रूप में देखा जाता है। मगर इस प्रयास में सायास शिक्षा का बहुआयामी ज्ञान और बहुस्तरीय उपयोग सीमित हो जाता तथा वृहद मानवीय भूमिका शिथिल हो जाती है। विद्या एक प्राचीन शब्द है। विद्या की अवधारणा में ही व्यक्तिगत लाभ की जगह समूची प्रकृति, जैविक—तंत्र की प्राकृतिक शुचिता एवं सर्वं भवन्तु सुखिनः जैसी ध्विन मुखर है। कौशल सिदयों से समाज में व्यावहारिक नवाचार, व्यापार और पेशे गत विकास का साधन रहा है। जबिक आधुनिक ज्ञान—विज्ञान ज्ञान की एक व्यापक साझी शिक्षण और अनुसन्धान प्रणाली है, जिसमें सैद्धांतिक और व्यवहारिक दोनों तरह के ज्ञान को आवश्यक महत्व दिया जाता है, और देश—काल की तत्कालीन स्थितियों के भीतर और बाहर की घटनाओं, वस्तुओं और उनके बीच के अंतर्संबंधों को जानने—समझने की चेष्टा होती हैं।

अनुभव, अनुसन्धान, कौशल, नवाचार, शिक्षा, विद्या जैसे ज्ञान—विज्ञान के सभी स्वरूपों को स्वयं से बाहर किसी और तक पहुंचाने के लिए संकेत और भाव भंगिमाएँ पर्याप्त नहीं होती, इसीलिए भाषा, शिल्प और संचार के कलाओं का विकास हुआ। बाल्यकाल से ही हम अपनी माँ, अपने परिवार और आस—पास के लोगों से भाषा, संकेत और संचार की कलाएं सीखते हैं। धीरे—धीरे उनका विस्तार आवश्यकता के अनुसार क्षेत्रीय, राष्ट्रीय और बहुदेशीय भाषाएँ सीखने और उनका उपयोग करने से होता रहता है। चूिक समकालीन शिक्षा और ज्ञान—विज्ञान यूरोप से शुरू हुए सिद्धांतों और तरीकों से ही विकसित हुई है, और भारत सिहत अनेक देशों में ब्रिटिश उपनिवेश में फली—फूली, इसी कारण राष्ट्रीय, क्षेत्रीय और स्थानीय भाषाओं का विकास आमतौर पर अवसर और उपयोगिता की कमी के कारण बाधित रहा है। ज्ञान—विज्ञान के विकास में सबकी भागीदारी के लिए सभी बोलियों, भाषाओं और संस्कृतियों का सम्यक विकास जरूरी है।

'कहार' पत्रिका को प्रारंभ से ही बहुभाषाई रखने के पीछे यही उद्देश्य है। हम लेखकों और पाठकों को उनकी अपनी भाषाओं में लिखने और पढ़ने के लिए प्रेरित करते हैं। परन्तु पिछले 12 वर्षों में अंग्रेजी के आलेख अधिक आते, हिंदी के थोड़े कम और अन्य भाषाओं के इक्का दुक्का। लोग दूसरी भाषाओं को देखे—जाने बिना उनके नाम पर लड़ते हैं, और अपने राजनैतिक वर्चस्व की चाह में बोलियों और भाषाओं के नाम पर किसी को भड़काते हैं, तो किसी का अपमान करते हैं। जब आप सब अपनी बोली और भाषा में सोचते हैं, तो लिखने, पढ़ने और बोलने से परहेज क्यों ? हम जितनी भाषाएँ सीख सकते हैं, अच्छा है। पर सोचें, लिखें, पढ़े और बोलें वही, जो हमारे लिए सबसे सहज हो। नई राष्ट्रीय शिक्षा नीति शिक्षा में स्थानीय भाषाओं के समावेश का समर्थन करती है। लेखकों, शिक्षाविदों और पाठकों को अपनी मातृभाषाओं में लिखने—पढ़ने में संकोच नहीं करना चाहिए। बहुभाषी होना अच्छी बात है, पर हमारे आस—पास जो अन्य भाषाएं और बोलियाँ हैं, उनका निरादर करना अक्षम्य अपराध है।

्राणा प्रताप सिंह)

Editorial

The Language of Learning and the Controversy of Language

Knowledge and science are needed to understand known truths and discover new truths. Knowledge is used to develop consciousness, skills, and abilities, to earn the human values and behaviour for the sustainable functioning of life and society. This is the importance of education. Knowledge is gained through experience, research, and study. The construction and sustainable development of human life and society require knowledge of science, skills, innovation, and initiatives, which are jointly expected from education, practice, and research. These are lifelong, continuous processes that help individuals develop socially, mentally, and morally. They shape the human minds for social and cultural adaptation to integrate into a family, society, country, and the entire humanity of this world.

Human consciousness analyses new information obtained through education and research, sorting out useful knowledge and retaining it within the individual. Developing specialized knowledge and skills in our new generation from available authentic knowledge, shaping their personalities appropriately, and instilling in them knowledge of their civic and social responsibilities and rights for living in a social order is an essential function of education.

Questions arise: Is there a difference between education and 'Vidya'? What is the difference between knowledge, science, skill, innovation, and initiation? Different words have their own unique and nuanced environments. Words, dialects, and languages are created and developed in different contexts and meanings, according to different emotional, functional, and cultural needs in different countries and times.

Education is a modern term. It is now seen as a specialized tool and a comfortable means of earning money. This limits the multifaceted knowledge and multifaceted use of education. This weakens its broader human role. 'Vidya' is an ancient word. The concept of 'Vidya' itself emphasizes the essence of nature, the natural purity of the biological system, and the call for everyone to be happy, rather than personal gain. Skill has been a tool for practical innovation, business, and professional development in society for centuries. Modern science and technology are a comprehensive, shared research system of knowledge, which gives essential importance to both theoretical and practical knowledge, and attempts to understand events, objects, and the interrelationships between them, both within and outside the contemporary conditions of time and space.

Signs and gestures are insufficient to convey all forms of knowledge and technology, such as experience, research, skills, innovation, education, and learning, to others outside of ourselves. This is why the arts of language, crafts, and communication evolved. From childhood, we learn language, signs, and communication from our mother, our family and those around us. Gradually, these skills are expanded by learning and using regional, national, and multinational languages as needed. Since contemporary education and technology have evolved from principles and methods originating in Europe, and flourished under British colonial rule in many countries, including India, the development of national, regional, and local languages has often been hindered by a lack of opportunity and utility. Therefore, for everyone's participation in the development of knowledge and science, the proper development of all dialects, languages, and cultures is essential.

This is the purpose behind making 'Kahaar' magazine multilingual from its inception. We encourage writers and readers to write and read in their own languages. However, in the last 12 years, there have been more articles in English, fewer in Hindi, and only a few in other languages. People fight in the name of other languages without knowing and seeing them, and in their pursuit of political dominance, they provoke and insult others in the name of dialects and languages. When you all think in your own dialect and language, why refrain from writing, reading, and speaking? It's good to learn as many languages as we can. But we should think, write, read, and speak only those that are most comfortable for us. The new National Education Policy supports the inclusion of local languages in education. Writers, academics, and readers should not hesitate to read and write in their mother tongues. Being multilingual is a good thing, but disrespecting the other languages and dialects around us is an unforgivable crime.

(Rana Pratap Singh)

www.kahaar.in

स्वास्थ्य एवं पोषण

समकक्ष समीक्षित

महिलाओं के बेहतर स्वास्थ्य एवं पोषण सुरक्षा हेतु उपयोगी हैं श्री अन्न

रुपाली सिंह¹, रुद्र प्रताप सिंह² एवं विश्व विजय सिंह³

सार

श्री अन्न सूखा प्रतिरोधी हैं तथा कम पानी वाले क्षेत्रों में भी अच्छी उत्पादकता प्राप्त होती है। इसलिए श्री अन्न को भविष्य का भोजन भी कहते हैं। बेहतर पोषक मूल्य होने के कारण यह फसलें अत्यंत लोकप्रिय हो रहीं हैं। यह ग्लूटेन मुक्त होते हैं तथा कार्बो हाइड्रेट, फाइबर, गुणवत्तायुक्त वसा तथा साथ ही कैल्सियम, में ग्नीशियम, पोटेशियम, लोहा, मैगनीज, जस्ता और विटामिन बी काम्प्लेक्स आदि पोषक तत्वों से भरपुर होते है। इसमें एंटी आक्सिडेंट होतें है जो मानव स्वास्थ्य को ठीक रखते हैं तथा शरीर की प्रतिरक्षा इकाई को मजबूत बनाते हैं। श्री अन्न के विभिन्न व्यंजन बना कर मूल्य संवर्धन किया जा रहा है, जिससे मानव स्वास्थ्य अच्छा हो सके ।

किसी भी समाज या राष्ट्र के विकास में महिलाओं की महत्वपूर्ण भूमिका होती है। आज महिलाएं पुरुषों के साथ कंधे से कन्धा मिला कर चल रही हैं। खेती बाड़ी से लेकर वायुयान उड़ाने, अंतरिक्ष में जाने व अन्य विभिन्न सेवा क्षेत्रों में अपनी सशक्त भागीदारी दे रहीं हैं। यदि हम अच्छे पोषण की बात करें तो यह किसी भी व्यक्ति के स्वास्थ्य एवं समृद्धि का मूल आधार होता है। महिलाओं व किशोरवय लड़कियों के लिए के लिए संतुलित पोषण का विशेष महत्व है क्योंकि पोषण की कमी से महिलाओं व लड़िकयों के स्वास्थ्य पर प्रतिकूल असर पड़ता है। कुपोषित महिलाओं के बच्चों को जीवन भर असामान्य शारीरिक संरचना, थकावट, बीमारी और मृत्यु के अधिक जोखिम का सामना करना पड़ता है। स्वस्थ महिलाएं समाज में कई महत्वपूर्ण भूमिका निभाती हैं, ऐसे में उन्हें पौष्टिक भोजन खिला कर उनके सामर्थ्य में वृद्धि की जा सकती हैं। शरीर को ठीक रखने के लिए कार्बोहाइड्रेट, वसा, प्रोटीन व खनिज तत्वों आदि की आवश्यकता पड़ती है।

लौह तत्व, फोलिक एसिड, कैल्सियम, आयोडीन तथा विटामिन 'ए' कुल 5 ऐसे महत्वपूर्ण विटामिन या खनिज हैं जो विशेषकर उन महिलाओं के लिए आवश्यक है जो गर्भवती हैं या स्तनपान कराती हैं। पोषक तत्वों की कमी से महिलाओं व बच्चों में एनीमिया (खून की कमी), बेरी बेरी (विटामिन बी या थायमिन की कमी), रतौंधी, वजन अधिक होना, उच्च रक्त चाप, हदय रोग, मधुमेह, लकवा, पित्त की बीमारी, गठिया रोग आदि बीमारी हो सकती हैं।

श्री अन्न (मोटा अनाज)

श्री अन्न, सिरिधान्य या मोटे अनाज महिला स्वास्थ्य और पोषण की दृष्टि से अत्यंत महत्वपूर्ण हैं, इसलिए इन्हें आज पोषक अनाज या सुपर फूड भी कहा जा रहा है। बाजरा जैसे मोटे अनाज को भविष्य का अनाज भी कह कर संबोधित किया जा रहा है। भारत सरकार की पहल पर वर्ष 2023 को संयुक्त राष्ट्र द्वारा अंतर्राष्ट्रीय पोषक अनाज वर्ष (इंटरनेशनल ईयर आफ मिलेट्स) के रूप में घोषित किया गया तथा इंटरनेशनल ईयर आफ मिलेट्स में पूरे

विश्व में मोटे अनाजों के प्रति किसानों और आम नागरिकों में जागरूकता फैलाई गई है। भारत सरकार व अन्य राज्य सरकारें भी मिलेटस पर विभिन्न योजनाओं एवं कार्यक्रमों का संचालन कर रहीं हैं तथा इसका प्रमुख उद्देश्य किसानों को मिलेट्स की खेती के बारे में जानकारी देना तथा लोगों में इनके उपयोग के प्रति जागरूकता लाना है। भारतीय श्री अन्न पौष्टिकता से भरपर, समृद्ध, सूखा सहिष्णु फसल है जो भारत के शुष्क एवं अर्ध शुष्क क्षेत्रों में उगाया जाता है। श्री अन्न गेहूं और चावल से बेहतर हैं, क्योंकि यह प्रोटीन, विटामिन और खनिजों से भरपर होते हैं। यह ग्लूटेन मुक्त होते हैं तथा ग्लाइसीमिक इंडेक्स भी कम होता है जो सीलिएक बीमारी और मधुमेह रोगियों के लिए उपयुक्त होता है। भारत श्री अन्न का सबसे बड़ा उत्पादक है तथा विश्व के शीर्ष 5 निर्यातकों में से एक है।

देश में श्री अन्न की खेती राजस्थान, महाराष्ट्र, कर्नाटक, आंध्र प्रदेश और मध्य प्रदेश की जाती है। श्री अन्न की मांग विदेशों में भी लगातार बढ़ रही है। 2020 में इसका विश्व निर्यात 400 मिलियन डालर था जो 2021 में बढ़ कर 470 मिलियन डालर हो गया, जबिक भारत ने 2021—22 में 62.95 मिलियन डालर की तुलना में 2022—23 में 75.46 मिलियन डालर का निर्यात किया तथा श्री अन्न को प्रोत्साहित करने में महिला स्वयं सहायता समूहों की भूमिका सराहनीय है। श्री अन्न के विषय में पारंपरिक

¹शोध छात्रा (सस्य विज्ञान विभाग), ²सह प्राध्यापक (कीट विज्ञान विभाग) व ³शोध छात्र (पादप रोग विज्ञान विभाग), कृषि महाविद्यालय, आ०न०दे०कृ०वि०वि०, कुमारगंज, अयोध्या (उ.प्र.)

500 450 400 350 300 250 200 150 100 50 0 कर्नाटक उत्तर प्रदेश तमिलनाडू मध्य प्रदेश बिहार आंध्र प्रदेश राजस्थान महाराष्ट

भारत में राज्यवार श्री अन्न उत्पादन की स्थिति

स्रोत : कृषि एवं किसान कल्याण मत्रालय (2023), भारत सरकार

अनुभव रखने वाली 1 करोड़ से अधिक जनजातीय महिलाएं इन स्वयं सहायता समूहों का हिस्सा हैं। अब आवश्यकता है श्री अन्न और उसके प्रसंस्कृत खाद्य पदार्थों के लिए बाजार उपलब्ध कराने की।

श्री अन्न के लाभ

- श्री अन्न को अलग—अलग जलवायु परिस्थितियों में भी अच्छी तरह से उगाया जा सकता है तथा वर्षा सिंचित क्षेत्रों में अच्छी तरह उगता है।
- स्वास्थ्य वर्धक व पौष्टिकता से भरपूर फसल: अन्य फसलों की अपेक्षा इसमें बेहतर सूक्ष्म पोषक तत्व और बायोएक्टिव फ्लेवोनाइड पाए जाते हैं।
- श्री अन्न में निम्न ग्लाइसिमिक इंडेक्स होता है तथा यह मधुमेह की रोकथाम से भी जुड़ा होता है।
- यह आयरन, जिंक, कैल्सियम जैसे खनिजों का उपयुक्त स्रोत है।
- श्री अन्न ग्लूटेन मुक्त होता है और सिलिएक रोग के रोगियों द्वारा इसका सेवन किया जा सकता है।
- श्री अन्न का हाइपरिलिपिडिमिया के प्रबंधन और रोकथाम और सीवीडी के जोखिम पर लाभकारी

प्रभाव पड़ता है।

- श्री अन्न वजन घटाने, बीएमआई और उच्च रक्तचाप में सहायक है।
- भारत में श्री अन्न का प्रयोग फलियों के साथ किया जाता है जो प्रोटीन का परस्पर पूरक बनता है तथा अमीनो एसिड सामग्री को बढ़ाता है एवं प्रोटीन की समग्र पाचन शक्ति में सुधार करता है।
- पकाने के लिए तैयार, खाने के लिए तैयार श्रेणी में श्री अन्न आधारित मूल्य वर्धित उत्पाद शहरी आबादी को आसानी से सुलभ व सुविधाजनक रूप से प्राप्त है।
- श्री अन्न की खेती कार्बन फुट प्रिंट को कम करने में सहायता प्रदान करती है।

श्री अन्न (मोटा अनाज) का वर्गीकरण

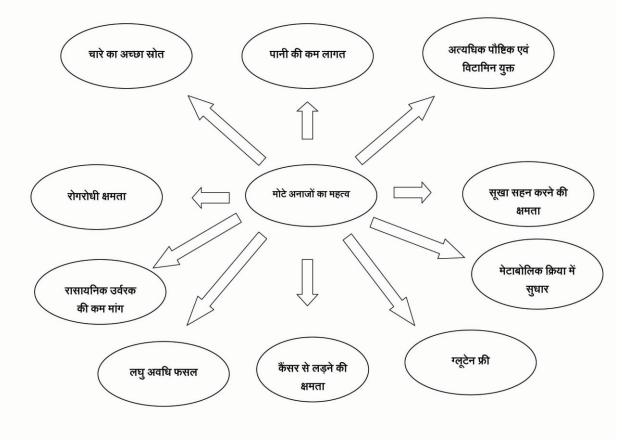
यदि हम मोटे अनाज को वर्गीकृत करें तो दो भागों में बाँट सकते हैं जो निम्नलिखित है

- प्रमुख मोटे अनाज : ज्वार, बाजरा, रागी (मंड्आ)
- गौड़ मोटे अनाज : कंगनी, कुटकी, कोदो, सावां

ত্বাৰ (Jowar/Sorghum/ Indian Millet) (Sorghum vulgare)

ज्वार विश्व के शुष्क क्षेत्रों का पारंपरिक मुख्य भोजन है। वैसे तो यह गर्म मौसम की फसल है परन्तु कम तापमान हेतु भी असहिष्णु है। यह कीट व रोग प्रतिरोधी, अत्यधिक पौष्टिक तथा जलवायु अनुकूल (resilient) फसल है। विश्व में उत्पादित अनाजों में ज्वार का पाचवां स्थान है जबकि भारत में चौथा स्थान है। इसमें प्रोटीन, रेशा, थायमीन, राइबों फ्ले विन, फो लिक अम्ल, केल्सियम, आयरन, फास्फोरस व बीटा कैरोटीन की प्रचूरता होती है। इसमें विटामिन बी, मैग्नीशियम, फ्लेवोनायड,

ज्वार


			_0			- 0		_	_	
गह	व	चावल	का	तुलना	म	श्रा	अन्न	क	पाषक	मल्य
. 2				25						Y

अनाज प्रति 100 ग्राम	प्रोटीन (ग्राम)	कार्बो हाइड्रेट (ग्राम)	वसा (ग्राम)	ऊर्जा (कि. कैलो.)	रेशे (ग्राम)	कैल्सियम (मि.ग्रा.)	फास्फोरस (मि.ग्रा.)	मैग्नीशियम (मि.ग्रा.)	जिंक (मि.ग्रा.)	आयरन (मि.ग्रा.)
ज्वार	9.97	67.7	1.73	334	10.22	28	274	133	2.96	3.95
बाजरा	10.96	61.8	5.43	348	11.49	27	289	124	2.76	6.42
रागी	7.16	66.8	1.92	321	11.18	364	210	146	2.53	4.62
कोदों	8.92	66.2	2.55	332	6.39	15	101	122	1.65	2.34
कुटकी	10.13	65.6	3.89	346	7.72	16	130	91	1.82	1.26
चेना	12.50	70.4	1.10	341	2.20	14	206	153	1.40	0.80
कंगनी	12.30	60.1	4.30	331	8.00	31	188	81	2.40	2.80
सावां	6.20	65.6	2.20	307	9.80	20	280	82	3.00	5.00
गेहूं	10.59	64.7	1.47	322	11.23	39	315	125	2.85	3.97
चावल	7.94	78.2	0.52	356	2.81	7	96	19	1.21	0.65

स्रोत : भारतीय खाद्य संगठन सारणी, रापोसं–2017, भारतीय खाद्य के पोषण मूल्य पर आधारित, रापोसं–2017

फेनोलिक एसिड और टैनिन पाए जाते हैं। विटामिन बी मेटाबालिज्म को बढ़ावा देने और बालों और त्वचा की सुंदरता हेतु आवश्यक है जबिक मैग्नीशियम हड्डी और हदय स्वास्थ्य को बढ़ावा देता है। इसे डायबीटीज को सही रखने के अलावा वजन ठीक रखने के लिए भी अच्छा अनाज माना जाता है। इसमे मौजूद कैल्सियम हिड्डियों को मजबूत करते हैं जबकी कापर और आयरन शरीर में लाल रक्त किणकाओं की संख्या बढ़ाने और खून की कमी (एनीमिया) दूर करने में सहायक होते हैं। गर्भवती महिलाओं के लिए इसका सेवन फायदेमंद होता है। इसकी तासीर ठंडी होती है इसलिए इसे वर्ष भर उपयोग लिया जा सकता है। इसमें मौजूद फाइबर आंत के लिए अच्छे होते है। इसकी रोटी ज्यादा पसंद की जाती है। यह पोषक तत्वों से भरपूर तथा ग्लूटेन मुक्त अनाज है।

मूल्यवर्धित उत्पादः इसका उपयोग आटा, दलिया, लड्डू, गुलाब जामुन,

ज्वार केक, मिन्स, ज्वार मैसूर पाक, ज्वार बर्फी, ज्वार समोसा, बिस्कुट आदि उत्पाद बनाने में किया जाता है। आम तौर पर ज्वार से बनी विभिन्न प्रकार की रोटी, भारत के कई हिस्सों में मुख्य आहार है जैसे महाराष्ट्र राज्य और उत्तरी कर्नाटक राज्य।

बाजरा (Bajara/Pearl Millet) (Pennisetum glaucum)

बाजरा की खेती प्राचीन काल से ही की जा रही है। दुनिया में अनाज के मामले में इसका स्थान 6 वें पर आता है। जबिक भारत में बाजरा की खेती धान और गेहूं के बाद तीसरे स्थान पर की जाती है। बाजरा उत्पादक प्रमुख राज्य राजस्थान, गुजरात, महाराष्ट्र, उत्तर प्रदेश, पंजाब, हरियाणा और मध्य प्रदेश हैं। यह सूखा के प्रति अन्य श्री अन्नों की अपेक्षा अधिक अवरोधी है तथा उच्च तापमान में भी आसानी से उगाया जाता है। यह फसल कम समय में (लगभग 65 दिनों में) ही तैयार हो जाती है। बाजरा प्रोटीन, आयरन, कैल्सियम, फाइबर, थाइमिन और नियासिन का बढिया स्रोत है। इसमें कापर, मैग्नीशियम, सेलेनियम, जिंक, फोलिक अम्ल और अमीनो अम्ल भी मौजूद होते हैं। इसके सेवन से शरीर मजबूत होता है तथा हड्डियाँ भी मजबूत होती हैं। लौह तत्त्व से भरपूर होने के कारण बाजरा का सेवन एनीमिया रोग में लाभकारी, रेशे से भरपूर होने के कारण

बाजरा

कब्ज में लाभदायक, ग्लूटेन से मुक्त होने के कारण इसका सेवन सिलियक रोग में फायदेमंद, क्षारीय प्रकृति का होने के कारण इसका सेवन अल्सर में गुणकारी, मैग्नीशियम उच्च रक्तचाप नियंत्रित करने में प्रभावी तथा बाजरे में पाया जाने वाला फाइटेट, फिनाल एवं टैनिन बढ़ती उम्र के दुष्प्रभाव को रोकने में कारगर है। इसमें पाया जाने वाला ओमेगा 3 फैटी एसिड रक्त में कॉलेस्ट्रोल का स्तर कम करता है, फास्फोरस और कैल्सियम हड्डियों को मजबूती देता है। बाजरा में प्रचुर मात्रा में पाये जाने वाला लेसीथिन स्नायुतंत्र को मजबूत बनाता है।

बाजरा में पाया जाने वाला पाली फेनोलिक एसिड, टैनिन और फाइटेट शरीर को कैंसर से बचाता है तथा इसके नियमित सेवन से वजन को नियंत्रित किया जा सकता है। इसमें मौजूद कैरोटीन हमारी आँखों के लिए फायदेमंद होता है।

मूल्यवर्धित उत्पादः दैनिक उपयोग में बाजरे के विभिन्न उत्पादों को लिया जा सकता है। इससे डोसा, दलिया, खिचड़ी, नाश्ते के लिए पोहा या उपमा के रूप में प्रसंस्कृत अनाज, बिस्कुट, कूकीज, केक, मठरी, रोटी, नमकीन, टिक्की आदि खाने के लिए तैयार कर सकते हैं।

मंडुआ (Ragi or Finger Millet) (Eleusine coracana L.)

रागी को मंडुआ के नाम से भी जाना जाता है। यह राई के दाने की तरह गोल, गहरे भूरे रंग का चिकना दिखता है। आयरन से भरपूर रागी रेड ब्लड सेल्स में हीमोग्लोबिन का उत्पादन करने के लिए एक जरूरी मिनरल की आपूर्ति करता है। इसमें कैल्सियम और पोटैशियम की मात्रा भी सबसे ज्यादा होती है। रागी कैल्शियम का बेहतरीन श्रोत है। 100 ग्राम रागी से 344 मिली ग्राम कैल्शियम प्राप्त होता है। इसे 6 से 8 घंटे भिगोने के बाद शिशु के लिए आहार तैयार किया जाता है। यह

रागी / मंडुवा

सुपाच्य होता है और उनके संपूर्ण विकास में मदद करता है। कई अध्ययनों से पता चला है कि खनिज और फाइबर से भरपूर रागी डायबिटीज़ से ग्रसित लोगों के लिए बहुत फायदेमंद है। क्योंकि ये ब्लड सुगर लेवल को बढ़ने नहीं देता है। अमीनो एसिड के चलते इसे बच्चों को देना अत्यंत आवश्यक है। इससे बच्चों के मस्तिष्क का विकास तेजी से होता है।

मूल्यवर्धित उत्पादः रागी के आटे व अनाज से बनने वाले प्रमुख उत्पादों में रागी डोसा, मठरी, माल्ट, केक, रोटी, लड्डू, इडली, हलवा, खीर आदि है।

गौड़ मोटे अनाज

कंगनी / काकुन (Foxtail Millet) (Setaria italica)

फाक्सटेल मिलेट अर्थात कंगनी एक पॉजिटिव मिलेट है। कंगनी प्राचीन फसलों में से एक है। दक्षिण भारत में इसकी खेती की जाती है। इसकी पौष्टिकता और सेवन से होने वाले फायदे के कारण लोगों का ध्यान इसकी ओर आकृष्ट हुआ है। यह पीले रंग का छोटा दाना होता है तथा इसमें फाइबर की मात्रा अच्छी होती है। यह प्रोटीन का भी बहुत अच्छा स्नोत है। इसमें अमीनो अम्ल, विटामिन्स और कई मिनरल्स होते हैं। यह बीटा कैरोटीन का मुख्य स्नोत माना जाता है। तंत्रिका तंत्र को ठीक रखने के लिए इसे सुपर फूड कहा जाता है। यह बच्चों और

कंगनी / काकुन

गर्भवती महिलाओं के लिए सुरक्षित माना गया है। यह बुखार में दिया जाय, तो बुखार ठीक हो जाता है। इदय संबंधी बीमारी, डायबिटीज, पेट संबंधी समस्या, रक्तहीनता, जोड़ो के दर्द, भूख की कमी, मूत्र विसर्जन के समय जलन, जलने से होने वाले घाव इत्यादि सभी परेशानी में कंगनी का सेवन करना चाहिए। इससे ये सभी समस्याएं ठीक होती हैं। इसे पकाने से पहले 6 से 8 घंटे के लिए पानी में भिगोकर रखना होता है।

मूल्यवर्धित उत्पादः कंगनी / काकुन के आटे व अनाज से बनने वाले प्रमुख उत्पादों में काकुन वेज मिक्स खिचड़ी, डोसा, मठरी, कटलेट, लड्डू, इडली, हलवा, खीर, उपमा एवं दक्षिण भारतीय काकुन मीठी पोंगल है।

कोदो मिलेट (Kodo Millet) (Paspalum scorbiculatum)

कोदो मिलेट पांच पॉजिटिव मिलेट में से एक है। कोदो मिलेट भी छोटा अनाज होता है। यह लाल रंग का होता है। औषधीय गुणों से भरपूर कोदो कफ और पित्त दोष को शांत करता है। कोदो मिलेट को ब्लड प्यूरीफायर कहा जाता है। यह डायबिटीज़, हार्ट डिजीज, कैंसर और पेट संबंधी समस्या से छुटकारा दिलाने में मदद करता है। कोदो मिलेट लिवर और किडनी के लिए अच्छा अनाज बताया जाता है। किडनी सम्बंधित रोगों में इसका सेवन औषधि की तरह कार्य करता है। इसके

सेवन से कई तरह के बैक्टीरियल ग्रोथ ख़त्म हो जाते हैं। इसमें इन्फ्लामेटरी गुण होते हैं। ग्लूटेन मुक्त कोदो नर्वस सिस्टम को मजबूती प्रदान करता है। इसे पकाने के लिए 6 से 8 घंटे के लिए भिगो कर रखना चाहिए।

मूल्यवर्धित उत्पादः कोदो मिलेट से बनने वाले प्रमुख उत्पादों में कोदो खिचड़ी, पुलाव, उपमा, डोसा एवं खीर है।

कोदो

सांवा / झंगोरा (Barnyard Millet) (Echinochloa frumentacea)

बार्नयार्ड को हिंदी में सांवा कहते हैं। यह पांच पॉजिटिव मिलेट में से एक है। यह कम समय में तैयार होने वाली फसल है। 45—60 दिन के अंदर यह काटने के लिए तैयार हो जाता है। प्रोटीन और आयरन की मात्रा बार्नयार्ड में अन्य अनाज से ज्यादा है। इसके सेवन से खून की कमी दूर होती है, शरीर मजबूत बनता है। डायबिटीज, हार्ट डिजीज, कैसर रोग में इस अनाज का प्रयोग करते हैं। इसके सेवन से अंदरूनी अंगों को ताकत मिलती है। यह बच्चों और गर्भवती महिलाओं के लिए भी सुरक्षित है।

मूल्यवर्धित उत्पादः सांवा को भिगो कर खीर, खिचड़ी, डोसा, इडली, उपमा आदि बनाया जा सकता है।

सांवा

कुटकी (Little Millet) (Panicum sumatrense)

कटकी भी एक पॉजिटिव मिलेट है। इसे बहुत आसानी से उगाया जा सकता है। इसे उगाने के लिए न तो ज्यादा गर्मी और न ज्यादा सर्दी की आवश्यकता होती है। सभी श्री अन्न अपने विशिष्ट गणों, पोषक तत्त्व व अमीनो अम्ल आदि पाए जाने के कारण एक विशेष गुण को धारण करते हैं। यह प्रोटीन, आयरन और फाइबर का बहुत बढ़िया स्रोत है। कुटकी के सेवन से डायबिटीज़ से छुटकारा मिल सकता है। यह हृदय के लिए भी एक अच्छा अनाज है। माइग्रेन में भी इसके सेवन से आराम मिलता है। यह एसिडिटी. अजीर्ण, खट्टी डकार जैसी समस्या से छुटकारा दिलाता है। इसे हार्मोनल संतुलन के लिए भी अच्छा बताया गया है। इसको खाने से पुरुष व महिला दोनों के प्रजनन तंत्र स्वरंथ होते हैं तथा नपुंसकता व बांझपन से भी बचाता है।

मूल्यवर्धित उत्पादः कुटकी से बनने वाले प्रमुख उत्पादों में खिचड़ी, पुलाव, उपमा, डोसा व खीर प्रमुख है।

चेना (Proso millet) (Panicum miliaceum)

चेना को अंग्रेजी में प्रोसो के नाम से जाना जाता है। चेना फाइबर से भरपूर ग्लूटेन मुक्त मिलेट है। चेना में प्रोटीन की उच्च मात्रा पाई जाती है। इसमें प्रोटीन ल्यूसिन तथा आइसोल्यूसिन की प्रचूरता एवं सल्फरयुक्त अमीनो अम्ल, मेथियोनीन तथा सिस्टीन के लिए भी जाना जाता है। यह नियासिन तथा फोलिक अम्ल के साथ विटामिन बी का अच्छा स्रोत है। इसके अलावा मैग्नीज, आयरन तथा पोटैशियम जैसे खनिजों का भी अच्छा स्रोत है। इसके सेवन से खून की कमी नहीं होती है तथा वजन नियंत्रित रहता है, साथ ही डायबिटीज़ का खतरा भी कम हो जाता है। मानसिक बीमारियों से बचाव होता है तथा हृदय को स्वस्थ रखने में मदद करता है।

मूल्यवर्धित उत्पादः चेना से बनने वाले प्रमुख उत्पादों में खिचड़ी, दही बड़ा, उपमा, डोसा आदि प्रमुख हैं।

जलवायु परिवर्तन को देखते हुए हम

चेना

यह कह सकते हैं कि श्री अन्न टिकाऊ कृषि के लिए अत्यंत आवश्यक हैं क्यूंकि जितना ये फसलें जलवायु परिवर्तन को सहन कर सकती हैं उतना अन्य फसलें नहीं कर सकती है। यह सूखा, तापमान और नमी के विभिन्न स्तरों पर भी आसानी से उगाई जा सकती है। कीटों और बीमारियों का प्रकोप भी इन फसलों में कम होता है। श्री अन्न से विभिन्न प्रकार के प्रसंस्कृत खाद्य उत्पाद भी बनाये जाते है। श्री अन्नों का पोषण मूल्य अन्य अनाजों की तुलना में अधिक होता है। इनकी प्रोटीन संतुलित अमीनो अम्लों की बनी होती है। फाइबर की अधिकता होती है। कोलेस्ट्राल के स्तर को कम करके रक्त में शर्करा की मात्रा को नियंत्रित करते हैं। इनका ग्लाइसिमिक इंडेक्स कम होता है जिससे ये मधुमेह नियंत्रण में सहायक होते हैं। बहुत सी बीमारियों से लड़ने की क्षमता होती है तथा शरीर को प्रतिरोधक क्षमता प्रदान करती है।

बोध कथा

एक बार एक व्यक्ति के जेब में दो हजार रूपये (2000 / —) एवं एक रूपये का सिक्का एक साथ हो गये।

सिक्का अभीभूत होकर दो हजार के नोट को देखे जा रहा था...नोट ने पूछा—इतने ध्यान से क्या देख रहे हो ?

सिक्के ने कहा — आप जैसे इतने बड़े मूल्यवान से कभी मिले नही इसलिए,ऐसे देख रहा हूँ, आप जन्म से अभी तक कितना घूमे फिरे होगे ?

आपका मूल्य हमसे हजारों गुना जादा है आप कितने लोगों के उपयोगी हुए होगे द्य

नोट ने दुखी होकर कहा — तुम जैसा सोचते हो ऐसा कुछ भी नही है। मै एक उद्योगपित की तिजोरी मे कई दिनों तक कैद था। एक दिन उसने टैक्स चोरी से बचने के लिए घूस के रुप में मुझे एक अधिकारी के हवाले कर दिया। मैने सोचा चलो कैद से छूटे। अब तो किसी के लिए उपयोगी होंगे ही, पर उसने तो मुझे बैंक लॉकर में ही कैद कर दिया।

महीनों बाद अधिकारी ने बंगला खरीदने में, हमें बिल्डर के हाथों मे सौप दिया।

उसने हमें एक बोरे में बांधकर एक अंधेरी कोठरी में बंद कर दिया।

वहां तो हमारा श्वांस फूलने लगा और तड़पता रहा। किसी तरह अभी कुछ दिन पहले मै इस व्यक्ति के जेब मे पहुंचा हूँ।

सही बताऊं तो,पूरी जिन्दगी जेल में कैद की तरह रहा। नोट ने अपनी बात पूरी कर सिक्के से पूछा,

दोस्त तू बता जन्म से अब तक कहां कहां घूमा फिरा किससे—किससे अज्ञात

मिले? सिक्का ने घबड़ाते—घबड़ाते कहा— दोस्त..मैं, अपनी क्या बात कहूँ?

एक जगह से दूसरी जगह तीसरी चौथी बस सतत घूमते—फिरते ही रहे! कभी भिखारी के कटोरे से बिस्कुट वाले के पास तो कभी बच्चों के पास से चाकलेट वाले के पास, पवित्र नदियों मे नहा कर, तीर्थ स्थल मे तीर्थ कर आए वहां प्रभु चरणों मे जगह मिली तो कभी आरती की थाली में घूमे और खूब मजा किया, और जिसके भी पास गए, सबको मजे करा रहा हूँ...सिक्के की बात सुनकर, नोट की आँखें भर आई।

आप कितने बड़े हो ये महत्व नहीं रखता!

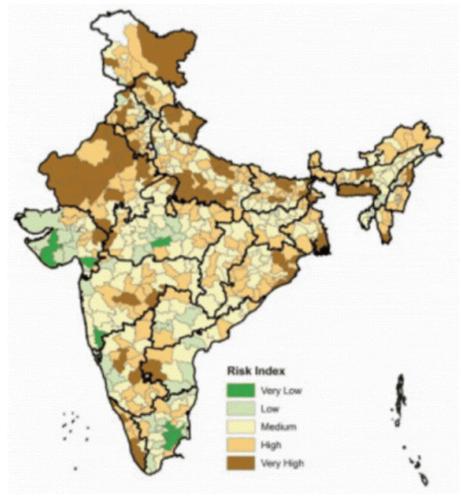
महत्वपूर्ण यह कि है कि—आप कितने उपयोगी हो।

ग्रामीण विकास www.kahaar.in समकक्ष समीक्षित

ग्रामीण भारत में सतत विकास के बढ़ते प्रयास

पीयूष गोयल

सार


वर्तमान में भारत के गावों में रहने वाली लगभग 65 प्रतिशत आबादी जलवायु परिवर्तन (क्लाइमेट चेंज) से जुड़ी हुई किताइयों का सामना कर रही है। चरम मौसमी घटनाओं जैसे सूखा, लगातार गर्मी, अत्यधिक वर्षा, तीव्र चक्रवाती गतिविधियों और आपदाओं के कारण कृषि से होने वाली औसत आय, फसल उत्पादन, आर्थिक लाभ, रोजगार के अवसर एवं सकल घरेलू उत्पाद को काफी नुकसान पहुंचा है। भारत सरकार के वर्ष 2018 में हुए एक आर्थिक सर्वेक्षण के अनुसार जलवायु परिवर्तन से देश को 9-10 अरब डॉलर की क्षति का अनुमान लगाया गया था। देश के 787 जिलों में से 109 जिलों में जलवायू जोखिम बहुत अधिक है, 201 जिलों में सिंचाई की कम पहुँच, सूखा, चक्रवात या बाढ़ की अधिक संख्या, तापमान में न्युनतम वृद्धि, छोटे खेत का आकार और उच्च मूल्य वाली संपत्तियाँ भी प्रभावित हैं। वैश्विक तापमान (ग्लोबल वार्मिंग) में एक डिग्री सेन्टीग्रेड की वृद्धि से मक्के की 7.4:, गेंहू की 6:, चावल की 6.2: और सोयाबीन की 3.1: उत्पादकता कम आँकी गई है। आने वाले वर्षों में जलवायु जोखिमों से बचने, बढ़ती आबादी और कृषि क्षेत्र पर पड़ने वाले प्रतिकूल प्रभाव से निपटने के लिए सतत कृषि विकास के माध्यम से इन बाधाओं को दूर करने के प्रयास किए जा रहें हैं। विश्व बैंक के अनुसार क्लाइमेट स्मार्ट एग्रीकल्चर (सीएमए) से खाद्य सुरक्षा और जलवायु परिवर्तन के संभावित खतरों से निपटा जा सकता है। वर्तमान में सीमित अनुसंधान और ग्रामीण विकास जैसे मुद्दे अहम हैं, तथा जागरूकता और जानकारी का आभाव है। सतत कृषि विकास के लिए जलवायु अनुकूल खेती के समर्थन के द्वारा इसके अंतर सम्बन्धों को ठीक किया जा सकता है।

भारत की आर्थिक व्यवस्था, कृषि और ग्रामीण विकास एवं कृषि उद्योगों पर आश्रित है। देश की लगभग 65% आबादी 6 लाख गावों में रहती है, जो इस समय जलवायु परिवर्तन (क्लाइमेट चेंज) से जुड़ी हुई कठिनाइयों का सामना कर रही है। सेंटर फॉर मॉनिटरिंग इंडियन इकोनॉमी (सीएमआईई) के उपभोक्ता पिरामिड घरेलू सर्वेक्षण के डेटा के आधार पर वर्ष 2017—18 में कुल रोजगार में कृषि की हिस्सेदारी 35. 3% थी, जो वर्ष 2018—19 में बढ़कर

38% हो गई है, जबिक कृषि उत्पादन से होने वाली राष्ट्रीय आय लगभग 48% है। देश में कृषि योग्य (बोई गई भूमि) 13.94

करोड़ हेक्टेयर है, जिसके 16.40 करोड़ हेक्टेयर क्षेत्रफल में 80% खाद्यान्न फसलों तथा 20% अन्य फसलों का उत्पादन होता है। जबकि सिंचित

भारत में (2020–2049) कृषि को प्रभावित करने वाले जलवायु परिवर्तन का खतरा (चित्र स्त्रोतः भारत तृतीय राष्ट्रीय संचार एवं प्रारम्भिक अनुकूलन संचार)

क्षेत्रफल केवल 23% (फसली क्षेत्र) ही है। जलवायु परिवर्तन के कारण सूखा, लगातार गर्मी की लहरें, अत्यधिक वर्षा, तीव्र चक्रवाती गतिविधियों तथा आपदाओं की बढती घटनाओं के कारण भारत को एक अत्यंत संवेदनशील देश (आईएनसीसीए, 2010) के रूप में देखा जाता है। कृषि के क्षेत्र में हाल के वर्षों में रोजगार में कमी, चरम मौसमी घटनाओं से औसत फसल क्षति आदि के परिणामस्वरूप भारत के सकल घरेल उत्पाद (जीडीपी) में लगभग 0.25% का नुकसान होने का अनुमान है। वर्ष 2018 में भारत सरकार के आर्थिक सर्वेक्षण में जलवायु परिवर्तन के कारण देश को 9-10 अरब डॉलर का नुकसान हुआ था। देश के 787 जिलों में से 109 जिलों में जलवायू जोखिम बहुत ज्यादा हैं, जबिक 201 जिलों में सिंचाई की कम पहुँच, सूखा, चक्रवात या बाढ़ की अधिक संख्या, तापमान में न्युनतम वृद्धि, छोटे खेत का आकार और उच्च मूल्य वाली संपत्तियाँ स्थित हैं, भी जलवायु परिवर्तन से प्रभावित हैं।

संयुक्त राष्ट्र के आंकलन अनुसार वर्ष 2050 तक विश्व कि जनसंख्या 900 करोड़ तक पहुँच जाएगी तथा मौजूदा खाद्य उत्पादन में 70% की बढ़ोत्तरी करने की आवश्यकता होगी। भारत में वर्ष 2039 तक जलवायु परिवर्तन के कारण प्रमुख फसलों की उत्पादन क्षमता में 9% की कमी हो सकती है। वर्ष 2065 तक जनसंख्या अनुमानतः 1.7 अरब तक पहुँचने से परिस्थितियाँ और भी विकट हो जाएंगी। वैश्विक तापमान (ग्लोबल वार्मिंग) में एक डिग्री सेन्टीग्रेड की वृद्धि से मक्के की 7.4%, गेंहू की 6%, चावल की 6.2% और सोयाबीन की 3.1% उत्पादकता कम देखी गई है। विश्व बैंक के अनुसार क्लाइमेट स्मार्ट एग्रीकल्चर (सीएमए) से खाद्य स्रक्षा और जलवायु परिवर्तन के संभावित खतरों से निपटने के लिए सतत खेती के समर्थन के द्वारा इसके अंतर संबंधों को ठीक किया जा सकता है। सतत कृषि विकास में आने वाली बाधाओं में जागरूकता और जानकारी का अभाव; वित्त तक सीमित पहुँच; अपर्याप्त नीति और नियामक ढांचा तथा सीमित अनुसंधान और विकास जैसे मुद्दे शामिल हैं, जिसका भारतीय कृषि क्षेत्र पर प्रतिकूल प्रभाव पड़ रहा है।

जलवायु परिवर्तन ने कृषि, विशेष रूप से खाद्य सुरक्षा के प्रति एक महत्वपूर्ण खतरा पैदाकर समस्याओं में नया आयाम जोडा है। तापमान में वृद्धि और जलवाय परिवर्तन से भारत में किसानों की धारणाओं पर किए गए एक अध्ययन (प्रतिशत में) मानसून में देरी (13.02%), वर्षा में कमी (12.50%), वर्षा में अनियमितता (10.94%) बारिश के दिनों की संख्या में कमी (7.81%) और अप्रत्याशितता से पारंपरिक फसल कैलेंडर में बदलाव महसूस किया है। केरल और उत्तराखंड के अधिकाश किसानों ने वर्षा में वृद्धि देखी है, जबकि हिमालयी क्षेत्रों में बर्फबारी के पैटर्न (1.56%) में दिसम्बर और जनवरी के बजाय फरवरी और मार्च का बदलाव महसूस किया गया है। उत्तराखंड, सिक्किम और हिमाचल प्रदेश के किसानों ने बर्फबारी में कमी (4.17%) देखी है। तापमान और वर्षा में बदलाव के अलावा तेज हवाए (4.17%), गर्मी की लहरें (2.60%), बादलों में भिन्नता और धूप की अवधि (2.08%) पर भी किसानों ने फसलों पर नकारात्मक प्रभाव

महसूस किया है। अधिकतम धारणाओं में वर्षा में परिवर्तन (57.81%) के बाद तापमान (33.33%) में परिवर्तन दर्ज हुआ है, क्योंकि पर्वतीय, तटीय और शुष्क क्षेत्र जलवायु परिवर्तन के प्रतिकूल प्रभाव के प्रति अधिक संवेदनशील होते हैं।

जलवायु परिवर्तन तथा बढती आपदाओं की भरपाई करने में अग्रिम पंक्ति में खड़े भारतीय किसान जलवायू संबंधी तनाव के कारण अक्सर फसलों के नुकसान और कर्ज के बोझ के कारण "कुसमायोजन" (मनोविज्ञान में इस्तेमाल शब्द अर्थात अयुक्तता अथवा मालएडजस्टमेंट) की वजह से पर्यावरण के साथ समायोजन करने में असफल रहते हैं। अक्सर वह मानसिक, सामाजिक, शारीरिक कठिनाइयों के साथ एक अप्रत्याशित चिंता, डर, अवसाद. असामाजिक व्यवहार अलगाव को प्रदर्शित करते हैं, तथा प्रतिक्रियावश कुछ किसान आत्महत्या तक कर लेते हैं। विभिन्न तनावों (जलवाय् और गैर-जलवाय्) परिस्थितियों में वह भूमि को बंजर छोडना, घटती संपत्ति, तनाव के मौसम में पौधों की आबादी कम करने, नई फसल में बदलाव, भूमि उपयोग के पैटर्न में बदलाव तथा पिछली फसलों

जलवायु परिवर्तन से परिस्थितियों में किसानों की धारणा को दर्शाता चित्र

की जगह गैर देशी पौधों को अपनाना जैसे कारणों से वह कुछ आंशिक लाभ तो ले लेते हैं, परंतु स्वदेशी फसल की किरमों और पारंपरिक ज्ञान प्रणालियों के लुप्त होने जैसे खतरों के साथ वह आजीविका विविधिकरण और प्रवासन (माइग्रेशन) के कारण फसल उत्पादन पर कम ध्यान देते हैं। सतत कृषि प्रणालियों (सस्टनेबल फ़ार्मिंग सिस्टम) में नई प्रौद्योगिकियाँ शामिल हैं जैसे कि:—

- (1) सटीक या परिशुद्ध खेती (प्रिसिशन फ़ार्मिंग) के अंतर्गत फसल की उत्पादन अवस्था की निगरानी और अनुकूलन के लिए सेन्सर, जीपीएस मैपिंग, और डेटा एनालिटिक्स आदि शामिल हैं।
- (2) कृषिवानिकी (एग्रोफोरेस्टरी) के अंतर्गत मृदा संरक्षण, जैवविविधता संरक्षण और कार्बन प्रच्छादन सहित विभिन्न लाभ हासिल किए जा सकते हैं।
- (3) वर्टिकल फ़ार्मिंग में जल की कम खपत के साथ लम्बवत परतों में फसलों की खेती की जाती है।
- (4) हाइड्रोपोनिक्स तकनीक एक सतत कृषि पद्धति का रूप ले रही है, जिसमें जल और पोषक तत्वों के कुशल उपयोग से मिट्टी के बिना पौधे उगाए जाते हैं, जो सीमित संसाधनों वाले शहरी क्षेत्रों में क्रांति ला सकती है।
- (5) रोबोटिक्स और ऑटोमेशन तकनीकों में श्रम की लागत को कम करने, मोबाइल आधारित ऐप से जानकारी, ड्रोन का उपयोग, फसल की पैदावार में सुधार और कीटनाशकों के उपयोग को कम करने आदि में मदद मिल सकती है।
- (6) नवीकरणीय ऊर्जा से कृषि के क्षेत्र में सौर और पवन ऊर्जा के उपयोग से कृषि कार्यों को बेहतर बनाया जा सकता है, तथा जीवाश्म ईंधन (पेट्रोल, डीजल) पर निर्भरता को कम कर ग्रीन

- हाउस गैसों के उत्सर्जन को कम किया जा सकता है।
- जैविक खेती एक अन्य सतत कृषि पद्धति है, जो फसलों का उत्पादन करने के लिए प्राकृतिक प्रक्रियाओं और तकनीकों जैसे कि फसल चक्रण अंतवर्तीय खोती (इंटरक्रॉपिंग) और कृत्रिम रसायनों के बिना प्राकृतिक उर्वरकों पर निर्भर करती है। जैविक खेती से उत्पादों की वैश्विक बाजार में सर्वाधिक मांग रही है, और कृषि उपादानों (एग्रीकल्चर कॉमोडिटीज) पर भी खर्च कम हो सकेगा। केंद्रीय बजट 2023–24 में अगले तीन वर्षों में एक करोड किसानों को प्राकृतिक खेती को अपनाने की दिशा में प्रोत्साहन तथा जैविक फसल उत्पादन की सभी क्रियाओं को सहकारिता और किसान उत्पाद संगठनों (एफपीओ) के माध्यम से बढावा देने का प्रावधान है। जैविक खेती का क्षेत्रफल वर्ष 2003-04 में 42000 हेक्टेयर भूमि से बढकर वर्ष 2021-22 में 59.1 लाख हेक्टेयर क्षेत्रफल हो गया था, तथा जैविक उत्पादों का मूल्य 5151 करोड़ रुपए को पार कर

गया था। किसानों को जैविक खेती पोर्टल के माध्यम से बाजार से जोड़ने और अपने जैविक उत्पाद बेचने की सुविधा उपलब्ध कराने का भी प्रावधान किया गया है। इसके अलावा उन्नत फसल किस्में, वर्षाजल संचयन और ड्रिप (बूंद—बूंद पानी) से सिंचाई प्रणाली (माइक्रोइरिगेशन सिस्टम) भी सतत कृषि पद्धतियों के उदाहरण हैं।

सतत कृषि विकास के अंतर्गत (1) पारिस्थितिको (ईकोलॉजी) के सतत विकास को प्राप्त करने के लिए वन प्रबंधन, टिकाऊ भूमिगत निर्माण, अपशिष्ट प्रबंधन, टिकांऊ जल प्रबंधन, स्थायी कृषि प्रणालियाँ, जल प्रबंधन और नवीकरणीय ऊर्जा के उपयोग (2) सामाजिक स्थिरता में स्थानीय और पारंपरिक तौर-तरीकों में लोगों के सामाजिक समावेश को बढ़ावा देना, तथा (3) आर्थिक स्थिरता के तहत पर्यावरण और सामाजिक एवं सांस्कृतिक पहलुओं को प्रभावित किए बिना दीर्घकालिक विकास जिसमें फसल चयन, टिकाऊ फसल प्रबंधन, कृषि विपणन (कृषि उत्पाद की कटाई, मंडी की जानकारी एवं उत्पाद को बाजार तक ले जाने की प्रक्रिया) और

(ऊपर) वर्टिकल खेती (नीचे) जैविक खेती से उन्नत ऊपज के सतत प्रयास

लाभप्रदता सुनिश्चित करना शामिल है।

वर्तमान में भूजल संरक्षण के लिए विभिन्न सरकारी और गैर-सरकारी संगठनों द्वारा कई परिवर्तनकारी हस्तक्षेप किए गए हैं, जिसमें धान की खेती को हतोत्साहित करना, पंजाब उप-मृदा जल संरक्षण अधिनियम, सब्सिडी के साथ सुक्ष्म सिंचाई को बढावा देना, कम पानी वाली फसलों की शुरुआत, मिट्टी की उर्वरता स्थिति में मसूर की खेती, मुदा स्वास्थ्य कार्ड को बढ़ावा देना, चरम जलवायु घटनाओं के प्रति स्रक्षा जैसे कि मौसम सूचकांक बीमा योजना, वर्षा बीमा योजना, फसल नुकसान के लिए मुआवजा, कम ब्याज पर ऋण, किसान क्रेडिट कार्ड, महात्मा गांधी ग्रामीण रोजगार गारंटी अधिनियम और जैविक खेती आदि शामिल है। ज्यादातर किसानों के कृषि से पलायन और इनकी संख्या में कमी होने से कृषि संरचना में भी कई बदलाव दिखाई देने लगे हैं। देश के गिरते सकल घरेलू उत्पाद (जीडीपी) में कृषि की हिस्सेदारी, किसानों की घटती संख्या, पलायन और आत्महत्या की घटनाओं के बावजूद भारत में जलवाय्-संवेदनशील कृषि क्षेत्र आजीविका का प्राथमिक स्त्रोत बना हुआ है। किसान सतत विकास के लक्ष्य और उन्नत तकनीकों को अपनाकर सतत कृषि प्रणालियाँ विकसित कर सकते हैं, तथा पर्यावरण, सामाजिक और आर्थिक स्थिरता को बढावा दे सकते हैं।

ग्रामीण भारत एक उल्लेखनीय परिवर्तनीय दौर से गुजर रहा है। वर्तमान में भोजन की थाली से लेकर किसानों तक स्टार्ट—अप की पहुँच है। अधिकतर युवा नई प्रौद्योगिकी को अपना रहे हैं, और डिजिटल दुनिया से जुड़ रहे हैं, जिससे कृषि उत्पादों के विपरण और वितरण के नए तरीके विकसित हुए हैं। कुछ नवीन प्रौद्योगिकी में मृदा (मिट्टी) का नमी स्तर, तापमान और फसल की वृद्धि को खेतों में मापने में मृदा संसर के उपयोग से डेटा एकत्रित कर वायरलेस के द्वारा किसानों तक पहुंचाया जाता है। ड्रोन के बड़े पैमाने पर उपयोग से

मानचित्रण, सर्वेक्षण और फसल निगरानी में डेटा एकत्रित करने में मदद मिल रही है। कुछ कृषि रोबोटिक उपकरण गायों का दूध निकालने, फल और सब्जियाँ चुनने और यहाँ तक कि घास काटने में उपयोगी हैं। कई स्टार्ट-अप बायोमेटीरियल जैसे फुलों के चक्रण (रिसाइकिल) से ऑर्गेनिक वमींकम्पोस्ट बनाने, बीजोपचार की जानकारी, बाजार की उपलब्धता, फसल अवशेष का प्रबंधन, जैविक खेती को बढावा देने जैसे कार्यों में मदद कर रहें हैं। कृषि में आधुनिक तकनीक ने उत्पादन और उत्पादकता में वृद्धि की है, और खाद्य सुरक्षा पर सकारात्मक प्रभाव पड़ा है, जबिक बदले में किसानों की आय में सुधार हुआ है। सतत खेती को अपनाने से अधिक से अधिक लोगों को पौष्टिक और किफायती भोजन तक पहुँच प्राप्त करना और ग्रामीण समुदायों में जीवन की गुणवत्ता में सुधार सुनिश्चित हुआ है।

पिछले 35 वर्षों में जनसंख्या वृद्धि को देखते हुए खाद्यान्न की मांग दोग्नी से भी अधिक बड गई है। खाद्य एवं कृषि संगठन (एफएओ) के अनुसार वैश्विक आबादी के लगभग 10% लोग (815 करोड़) लोग कुपोषित हैं, अर्थात स्वस्थ जीवन जीने के लिए पर्याप्त भोजन नहीं है। एसजीडी के लक्ष्य 1.2 के तहत इस अनुपात को कम से कम आधा करना होगा. जिसके लिए 2030 से पहले भारत इसे हासिल करने की राह पर है। भारत एक विविधतापूर्ण देश है, इसलिए किसानों की धारणाएं स्थानिक रूप से भिन्न हो सकती हैं, परंतु मौजूदा जलवायु परिवर्तन में वृद्धि और तीव्रता के अलावा रासायनिक उर्वरकों के उपयोग से भूमि और जल में जैवविविधता को खतरा और भूजल सिंचाई जैसे कई प्रकृतिक संसाधनों के उपयोग के भविष्य में घातक परिणाम हो सकते हैं। इसके लिए वर्तमान चुनौतियों को देखते हुए और स्थिरता प्रदान करने के लिए अतिरिक्त परिवर्तन अथवा नियम निर्धारित करने की आवश्यकता हो सकती है। कृषि क्षेत्र में आधुनिक नई तकनीकों को अपनाने, तकनीकी

उन्नयन, उच्च और बेहतर उत्पादकता और सतत विकास को राष्ट्र की प्रगति में स्तंभ मानकर समवेशी ग्रामीण विकास में इसे व्यापक करने पर और अधिक जोर देना होगा।

भारतीय किसानों द्वारा अपनाए गए कुछ अनुकूलन उपाय जैसे कि वृक्षारोपण का पुनर्निर्धारण, मल्चिंग (मिट्टी को कार्बनिक या अकार्बनिक पदार्थों से ढकना), एकीकृत कीट प्रबंधन, कुशल सिंचाई विकल्प चूनना, जलवायु सहिष्णु क़िस्मों को उगाना, मिश्रित फसल उगाना जैसे कुछ सरहनीय कदम शामिल हैं। कुछ अध्ययनों के अनुसार पारंपरिक खाद्य फसलों की लंबी परिपक्वता अवधि या लंबे समय तक नमी के तनाव को झेलने में असमर्थता के कारण किसानों ने गैर-खाद्य फसलों, भूमि के उपयोग और श्रम आवंटन में पर्याप्त बदलाव की ओर रुख किया है। खासकर पहाडी इलाकों में किसानों ने पारंपरिक किस्मों को छोड़कर नई फसलों को चुना है। गर्म उष्णकटिबंधीय क्षेत्रों में उगाई जाने वाली लीची, आम और सरसों जैसी फसलों ने पहाडी क्षेत्रों में पारंपरिक फसलों गेहूं, बाजरा की जगह ले ली है। तापमान के बढ़ने से उत्तराखंड के किसानों ने सेब के खेतों को सब्जियों को उगाने में बदला है, या इन्हें अधिक ऊंचाई पर स्थानांतरित कर दिया है। युकेलिप्टस पेड़ों के (हाइड्रोलॉजिकल परिणामों) अर्थात बहुत तेजी से जलस्तर में कमी होने की जानकारी के बावजद भी किसानों की प्राथमिक चिंता केवल लकडियों को बेचकर लाभ कमाना है।

कुछ कृषि नीतियाँ भी अक्सर पारंपरिक फसलों की अनदेखी करके उन्नत उच्च उपज वाली किस्मों को बढ़ावा देती हैं, जिससे पारंपरिक किस्मों के लुप्त होने का खतरा बड़ सकता है। भारत में विलुप्त हो रही प्रजातियाँ, पेड़—पौधे, बीजे, छालें इत्यादि सिर्फ म्यूजियम अथवा अनुसंधान संस्थानों में ही दिखाई देती हैं। विभिन्न पेड़ों की विभिन्न प्रजातियों की विविधता की जानकारी होना, जीवित अवस्था में

रखना और एक ही पेड़ की कई प्रजातियों को एक साथ रखकर संरक्षण करने के लिए "वनस्पति (बोटेनिकल) पार्क" की रूपरेखा और व्यवस्था होने की बेहद आवश्यकता है, जिसका भारत में अभी अभाव है। किसान विकास केन्द्रों अथवा अन्य जगहों पर पेड़ों की विभिन्न किस्मों की नर्सरी और सीड बैंक / जर्म प्लाज्म की स्थापना से विभिन्न प्रजातियों और पेड़ों के संरक्षण और नई पीढ़ी के किसानों को इनकी विविधता की जानकारी देना, जीवित रखना और पूर्णतया निगरानी करना महत्वपूर्ण होगा।

भारतीय कृषि अनुसंधान परिषद (आईसीएआर) की जलवायु प्रतिरोधी कृषि पर नेटवर्क परियोजना राष्ट्रीय नवाचार (एनआईसीआरए) वर्ष 2011 में शुरू की गई थी। जलवायु परिवर्तन से ज्यादा संवेदनशील राज्यों और केन्द्रशाषित प्रदेशों के लिए वर्ष 2015-16 में राष्ट्रीय अनुकूलन फड (एनएएफसीसी) का गठन हुआ। जलवायु अनुकूल गाँव अथवा क्लाइमेट सस्टनेबल विलेज (सीएसवी) द्वारा भी स्थानीय स्तर पर किसानों को योग्य बनाने का संस्थागत प्रयास किया गया है। 2015 में शुरू हुई परंपरागत कृषि विकास योजना (पीकवीवाई) का उद्देश्य भी गावों में क्लस्टर बनाकर जैविक खेती को बढावा देना था। 2017 में शुरू हुई "बायोटेक किसान" योजना से वैज्ञानिकों और किसानों के बीच साझेदारी के तहत वैज्ञानिक प्रयोगशालाओं में होने वाले कृषिगत नवाचारों (इन्नोवेशन) को किसानों से जोड़ने का प्रयास है। खेतों के मेड़ पर पेड लगाने के लक्ष्य के साथ एक एग्रोफोरेस्ट्री उपमिशन की शुरुआत वर्ष 2016-17 में हुई थी। इसी प्रकार सतत कृषि (सस्टनेबल एग्रीकल्चर) के लिए कृषि और किसान कल्याण मंत्रालय के बजट का 0.8% एक राष्ट्रीय मिशन (नेशनल मिशन ऑन सस्टनेबल एग्रिकल्चर) योजना के अंतर्गत पर्यावरण अनुकूल तकनीकों, बिजली बचाने वाले सक्षम उपकरणों, प्राकृतिक संसाधनों का संरक्षण आदि के लिए प्राप्त कराया गया है। 2014—15 में मंत्रालय ने राष्ट्रीय लाइवस्टॉक मिशन के अंतर्गत दुधारू पशुओं पर ध्यान देने, किसानों की आजीविका, पशु जैवविविधता का संरक्षण और प्राकृतिक वातावरण के बचाव पर ध्यान दिया है, तथा वर्ष 2020—21 में 10,000 किसान उत्पादन संगठन (एफपीओ) के गठन का लक्ष्य रखा व वर्ष 2023 तक 2,298 एफपीओ पंजीकृत हुए थे, और 1,871 एफपीओ पंजीकरण की प्रक्रिया में शामिल थे।

किसानों के लिए कृषि अभियंत्रण को बढावा देकर 'फसल अवशेषों का खेतों में प्रबंधन' योजना के तहत सरकार ने 50% सब्सिडी मूल्य पर सुपर स्ट्रा मैनेजमेंट सिस्टम, पैड़ी स्ट्रा चापर, हैपी सीडर, क्रॉप रीपर, जीरो टिल सीड, मास्टर/रोटरी स्लेशर, हाइडोलिक रिवर्सेबिल मोल्ड बोल्ड प्लाऊ जैसे उपकरण व मशीनरी को उपलब्ध कराने का प्रावधान रखा है। "वाटरशेड विकास घटक— प्रधानमंत्री कृषि सिंचाई योजना (डब्ल्यूडीसी-पीएमकेएसवाई)" के अंतर्गत 2021-22 में सिंचाई और कृषि को बढावा देने के लक्ष्य से वर्षा आधारित खेती वाले क्षेत्रों और खेती योग्य बंजर भूमि में प्राकृतिक संसाधनों के बेहतर प्रबंधन करने, जल संचयन संरचनाओं का निर्माण करने और स्थायी सुधार तथा डब्ल्यूडीसी-पीएमकेएसवाई 2.0 के तहत बागवानी फसलों को बढावा देना, स्पाइनलेस कैक्टस की खेती को प्रोत्साहन तथा रिंप्रगशेड के पुनरुद्धार को शामिल

किया गया है।

वाटरशेड विकास घटक— प्रधानमंत्री कृषि सिंचाई योजना से बदलता भारत

भारतीय कृषि अनुसंधान परिषद ने किसान विज्ञान केन्द्रों (केविके) के माध्यम से कृषि उद्यमिता में सतत विकास हेतू कई नवोन्मेषी पहल जैसे नारी (एनएआरआई) तथा वाटिका (वैल्यू एडिशन एंड टेक्नोलॉजी इंक्यूबेशन सेंटर इन एग्रिकल्चर) के द्वारा पोषण से जोडने वाली 79 बायोफोर्टिफाईड किरमों की पारिवारिक खेती को बढावा दिया है। किसान विज्ञान केन्द्रों के परिसर में कौशल विकास को बढावा देने के लिए 100 वाटिका केंद्र खोलने का लक्ष्य रखा है। इसी प्रकार 100 किसान विज्ञान केन्द्रों में 2020-21 में आर्या परियोजना के अंतर्गत प्रशिक्षण कार्यक्रमों का संचालन किया, जिससे कुछ प्रशिक्षित ग्रामीण युवाओं ने ग्रामीण क्षेत्रों में माइक्रो एंटरप्रेन्योरियल इकाई (यूनिट) की स्थापना की। पारंपरिक कृषि ज्ञान प्रणालियों के प्रलेखन और सत्यापन के लिए भी परिषद ने आदिवासी बहल जनजातीय क्षेत्रों में ज्ञान प्रणाली और होमरटेड कृषि प्रबंधन (क्षमता) शुरू की है। कृषि नवाचार, विज्ञान और प्रौद्योगिकी कार्यक्रम "फार्मर्स फुर्स्ट" के तहत 52 परियोजनाओं को मंजूरी के साथ किसानों की आय बढ़ाने का सार्थक प्रयास हुआ, तथा "मेरा गाँव, मेरा देश" जैसी पहल के तहत "प्रयोगशाला से भूमि प्रक्रिया" में 13,500 गांवों को गोद लेकर किसानों का वैज्ञानिकों से सीधा संपर्क स्थापित किया गया है। कृषि नवाचार कोष का उपयोग करके कृषि आधारित स्टार्ट—अप के माध्यम से 99 आईसीएआर इकाइयों में 50 कृषि व्यवसाय ऊष्मायन (इक्यूबेशन) केंद्र स्थापित किए गए हैं।

वर्ष 2020 में प्रधानमंत्री ग्राम सड़क योजना सहित ग्रामीण विकास क्षेत्र में केंद्र प्रायोजित योजनाओं का नीति आयोग द्वारा मूल्यांकन किया गया, और इसे सतत विकास के अंतर्राष्ट्रीय लक्ष्य (सस्टनेबल डिवेलपमेंट गोल अथवा एसजीडी) के 17 लक्ष्यों में से कुछ को छोडकर इसे देश के बुनियादी ढाचे और मुद्दों को सबोधित करते हुए देखा गया है। 25 सितंबर, 2015 को संयुक्त राष्ट्र महासभा के प्रस्ताव से 17 सतत विकास लक्ष्यों (एसडीजी) को तैयार किया गया था। इसको प्राप्त करने तथा स्थानीय आर्थिक विकास और सामाजिक न्याय व्यवस्था को सुनिश्चित करने के लिए ग्राम पंचायतों को अधिक सशक्त और ग्रामीणों को समान अवसर देने के लिए 32 वर्ष पूर्व 73वें और 74वें संशोधनों ने ग्रामीण पंचायतों और शहरी नगरपालिका परिषदों को संवैधानिक दर्जा दिया था। 2018 में पं. वेणगोपाल की अध्यक्षता में एक स्थायी समिति का गठन पंचायतों के कामकाज में सुधार के संदर्भ में किया गया, जिसकी रिपोर्ट में पंचायतों की अनिवार्य बैठकों (ग्राम सभा) ना होने पर चिंता के साथ ग्रामीणों और प्रतिनिधियों विशेषकर महिलाओं की कम उपस्थिति पर ध्यान आकृष्ट किया गया। सकारात्मक रूप से सोचने और नए तरीके अपनाने से भविष्य में विकसित ग्रामीण भारत की

परिकल्पना ग्रामीण विकास के माध्यम से संभव हो सकती है।

भारत सरकार विभिन्न कार्यक्रमों के माध्यम से जलवायु-स्मार्ट कृषि को बढावा देने के साथ-साथ फसल विविधीकरण, संरक्षण, जुताई आदि में नवीन और टिकाऊ कृषि तकनीकों को शामिल करके उद्देश्य के तहत मिट्टी के स्वास्थ्य में सुधार करना, ग्रीनहाउस गैस उत्सर्जन को कम करना और कृषि प्रणालियों की क्षमता को जलवायू परिवर्तनशीलता का सामना करने के लिए जलवायु लचीलेपन पर अपना ध्यान केंद्रित कर रही है। किसानों द्वारा जलवायु प्रतिरोधी (सुखा–सहिष्णु, कम पानी की खपत वाली और खारे पानी को सहन करने वाली) फसलों की किरमों को अपनाया गया है। तटीय क्षेत्रों में बढ़ती चक्रवाती गतिविधियों और खारे पानी की घुसपैठ के जवाब में तथा कुशल सिंचाई और जल प्रबंधन (जैसे, ड्रिप, स्प्रिंकलर, वर्षा जल संचयन संरचना के निर्माण) पर किसानों ने ध्यान दिया है। केंद्रीय बजट 2022 में कृषि क्षेत्र के विकास को बढ़ावा, उपज की निगरानी और कीटनाशकों के छिडकाव के लिए डिजिटल तकनीकों और ड्रोन को बढ़ावा दिया गया है। भारत सरकार के ई—नाम (राष्ट्रीय कृषि बाजार) से किसान और व्यापारी ऑनलाइन माध्यम से कृषि उपज बाजार समिति से संबन्धित सभी जानकारी प्राप्त कर सकते हैं, जिस पर 1000 से अधिक किसान उत्पाद संगठन (एफपीओ), 1.66 करोड़ पजीकृत किसान तथा 1.28 लाख कारोबारी / व्यापारी हैं। ग्रामीण क्षेत्रों में वित्तीय लाभ को बढावा देने के लिए प्रत्यक्ष लाभ अंतरण (डायरेक्ट बैनिफिट ट्रान्सफर अथवा डीबीटी) कार्यक्रम के तहत केंद्र, राज्य और स्थानीय निकायों से तथा पीएम जन–धन योजना से विभिन्न योजनाओं के सभी लाभार्थियों को सरकारी लाभों के लेनदेन में पारदर्शिता. पेंशन धारकों को सुविधा और वित्तीय लेनदेन में जवाबदेही को बढावा मिला है। सतत विकास के लिए स्वच्छता विकास, सेहत का विकास और सतत प्रयास का होना बहुत आवश्यक है, जिससे हम एक परिकल्पित और परिलक्षित ग्रामीण भारत का सपना साकार कर सकते हैं।

नदी किनारे गाँव है

राणा प्रताप सिंह

चल कर आये, बहुत दूर से नदी किनारे गाँव हैं। पैरो में कंकड़ चुभते हैं, फटी बिवाई पाँव है।।

> रात—दिन दहशत में बीते, कोई चोर, कोई साव है। नाविक गया, विदेश कमाने, टूटी सी एक नाव है।

वोट—सोट सब कहने को है, बड़े—बड़ों का दाँव है। पानी यों चढ़ गया घरों में, ज्यों आटे का भाव है।।

> जाने कौन—कौन आता, कोई अफसर, कोई राव है। पैर कहीं टिकते ही नही है, रेत के ऊपर ठाँव है।।

www.kahaar.in

जल संरक्षण www.kahaar.in समकक्ष समीक्षित

भारत में भावी जल संकट

अंकित तिवारी¹, शिवम सिंह²*, जगन्नाथ पाठक³ और महेंद्र प्रताप सिंह⁴

सार

भारत में जल संकट को सुलझाने के लिए जल संरक्षण, वर्षा जल संचयन और जल पुनर्चक्रण जैसे उपायों की आवश्यकता है। इसके अलावा, जल उपयोग के प्रति जागरूकता बढ़ानी होगी ताकि हम आने वाली पीढ़ियों के लिए जल संसाधनों को बचा सकें। जल संकट के समाधान के लिए सरकार, समाज, और हर नागरिक को मिलकर काम करने की आवश्यकता है।

परिचय

जल भारत की जीवनधारा है। यह केवल पीने, कृषि और उद्योग के लिए आवश्यक नहीं है, बिल्क यह हमारे सांस्कृतिक और धार्मिक जीवन से भी गहरे तौर पर जुड़ा हुआ है। जल के संरक्षण और सही उपयोग के बिना देश का समग्र विकास संभव नहीं है। इसलिए, जल के प्रति जागरूकता और इसके संरक्षण की आवश्यकता पहले से कहीं अधिक महस्तूस हो रही है। हमें जल के महत्व को समझते हुए इसे बचाने और संरक्षित करने के लिए कदम उठाने होंगे।

भारत में जल संकट गहराता जा रहा है. जल की उपलब्धता में असमानता है और देश के कई हिस्सों में जल संकट है. जल संकट की वजह से लाखों लोगों की जिंदगी और आजीविका पर खतरा मंडरा रहा है. समाज में जल संरक्षण के प्रति जागरूकता बढ़ाना भी जरूरी है, ताकि आने वाली पीढ़ियों के लिए पानी की उपलब्धता बनी रहे। जल संकट से निपटने के लिए सरकार और जनता दोनों को मिलकर प्रयास करने होंगे। इस संकट का समाधान केवल तभी संभव है जब हम सभी मिलकर जल के महत्व को समझें और इसके सही उपयोग के लिए कदम उठाएं।

भारत में जल संकट की स्थिति

 भारत में जल की उपलब्धता कम हो रही है. साल 2001 में प्रति

- व्यक्ति औसतन 1,816 घन मीटर पानी मिलता था, जो घटकर 1.545 घन मीटर रह गया.
- बढ़ती माँग के कारण, यह अनुमान लगाया गया है कि भारत 2028 तक पानी की कमी वाला देश बन जाएगा।
- भारत में जल की कमी की वजह से वन्यजीवों और प्राकृतिक पर्यावासों को भी खतरा हो रहा है.
- भारत में जल की कमी की वजह

¹सहायक अध्यापक, सस्य विज्ञान विभाग — बिरसा कृषि विश्वविद्यालय (तिलका मांझी कृषि महाविद्याल;) गोड्डा) ²विषय वस्तु विशेषज्ञ, कृषि विज्ञान केन्द्र, सुल्तानपुर, ए.एन.डी.यू.ए.टी., कुमारगंज, अयोध्या ³प्राध्यापक, मृदा विज्ञान एवं कृषि रसायन विभाग, बांदा कृषि एवं प्रोद्योगिक विश्वविद्यालय, बांदा) उत्तर प्रदेश ⁴विषय वस्तु विशेषज्ञ, कृषि विज्ञान केन्द्र, सोनभद्र, ए.एन.डी.यू.ए.टी., कुमारगंज, अयोध्या *ईमेल : shivambuat@gmail.com से जैवविविधता और पारिस्थितिक तंत्र के संतुलन को भी नुकसान हो रहा है.

 भारत में जल की कमी की वजह से कई वन्यजीवों को इंसानों के इलाकों में जाना पड़ता है, जिससे दोनों के बीच संघर्ष होता है.

जल के प्रमुख स्रोत

- प्रमुख निदयाँ जैसे गंगा, यमुना, सिंधु, ब्रह्मपुत्र, नर्मदा, ताप्ती, कावेरी, और गोदावरी निदयाँ जल का मुख्य स्रोत हैं।
- भारत में कई बड़े जलाशय और बांध बनाए गए हैं जो सिंचाई और जल आपूर्ति के लिए अत्यधिक महत्वपूर्ण हैं। कांची, भाखड़ा, हीराकुंड, और नर्मदा बांध जैसे प्रमुख बांधों से लाखों किसानों को सिंचाई की सुविधा मिलती है।
- भूमिगत जल का भी महत्वपूर्ण स्थान है, खासकर ऐसे क्षेत्र जहाँ वर्षा की कमी है। गहरे कुएं, हैंडपंप, और बोरवेल द्वारा पानी निकाला जाता है, लेकिन अब भूमिगत जल स्तर में गिरावट आ रही है, जो चिंता का विषय बन चुका है।
- वर्षा जल मानसून की बारिश भारतीय कृषि के लिए जीवनदायिनी है। प्रत्येक वर्ष, भारत में मानसून के समय वर्षा जल उपलब्ध होता है, जिसका

उपयोग कृषि कार्यों में किया जाता है। हालांकि, यह जल केवल कुछ महीनों के लिए उपलब्ध रहता है, और इसे संचय करने के लिए विभिन्न उपायों की आवश्यकता होती है।

जल संकट और इसके कारण

भारत में जल संकट एक बढ़ता हुआ मुद्दा बन चुका है। इसके कई कारण हैं

- जल की अधिक खपत कृषि, उद्योग और घरेलू उपयोग के लिए जल की अत्यधिक खपत हो रही है।
- प्राकृतिक संसाधनों का असंतुलित उपयोग जल का असमान वितरण और पर्याप्त जल संचयन न होना।
- वर्षा में उतार—चढ़ाव मानसून में अनियमितता और असमय वर्षा होने के कारण जल की उपलब्धता प्रभावित होती है।
- निदयाँ, झीलें और जलाशय प्रदूषित हो रहे हैं, जिसके कारण जल की गुणवत्ता खराब हो रही है।
- जलवायु परिवर्तन के कारण वर्षा पैटर्न बदल रहे हैं, जिससे कुछ क्षेत्रों में सूखा और कुछ क्षेत्रों में बाढ की स्थिति उत्पन्न हो रही है।

जल के संरक्षण के उपाय

 वर्षा जल संचयन वर्षा जल का संग्रह करके इसे भविष्य में

- उपयोग के लिए स्टोर किया जा सकता है। यह विधि भारत के कई हिस्सों में अपनाई जा रही है, खासकर ग्रामीण क्षेत्रों में।
- निदयों की सफाई और पुनर्जीवन निदयों के किनारे बसे क्षेत्रों में निदयों को साफ करने और उनके प्रवाह को बनाए रखने की कोशिशें हो रही हैं। गंगा, यमुना और अन्य प्रमुख निदयों को पुनर्जीवित करने के लिए विभिन्न योजनाएँ बनाई जा रही हैं।
- जल पुनर्चक्रण जल पुनर्चक्रण से जल की बचत की जा सकती है। यह तरीका विशेष रूप से शहरी क्षेत्रों में लागू किया जा सकता है, जहाँ जल की खपत बहुत अधिक है।
- जल उपयोग में सुधार कृषि में ड्रिप इरिगेशन, स्प्रिंकलर और अन्य जल—बचत तकनीकों का प्रयोग करके जल की खपत को कम किया जा सकता है।
- प्रदूषण नियंत्रण जल स्रोतों की सफाई और प्रदूषण को नियंत्रित करने के लिए कड़े नियम और कानून बनाए गए हैं। नदियों में औद्योगिक अपशिष्ट और घरेलू गंदगी के प्रवाह को रोकने के लिए कदम उठाए जा रहे हैं।

हिसाब

जिस दिन औरतें लेने लगेंगी हिसाब सदियों की चुप्पियों का चहारदीवारी में सिमट के रह गईं सिसकियों का तुम्हारी पितृसत्तात्मक भभकियों का उस दिन मदों तुम्हारी मद्गीनगी बौनी सिद्ध हो जाएंगी।

कैथीशंकरपुर, लालगंज, आजमगढ़-276202 <u>yvishal532@gmail.com</u>

एडवोकेट विशाल यादव

हाइपेशिया

वेदप्रिय

सार

हाइपेशिया (लगभग 360—415 ई.) प्राचीन मिस्र के अलेक्ज़ें ड्रिया शहर की एक प्रसिद्ध यूनानी महिला दार्शनिक, गणितज्ञ और खगोलशास्त्री थीं। वे नव—प्लेटोनिक दर्शन की अनुयायी थीं और उन्होंने विज्ञान, गणित और तर्कशास्त्र के क्षेत्र में उल्लेखनीय योगदान दिया। वह अपने समय में शिक्षा और ज्ञान की प्रतीक मानी जाती थीं। उन्होंने खगोल सिद्धांतों पर काम किया और गणित में कॉनिक सेक्शन्स पर भी शोध किया।

हाइपेशिया ने अलेक्ज़ें ड्रिया के पुस्तकालय में विद्यार्थियों को पढ़ाया, जिनमें ईसाई, यहूदी और पैगान सभी समुदायों के लोग शामिल थे। उनकी मृत्यु धार्मिक कट्टरता का शिकार हो कर हुई। 415 ई. में एक ईसाई भीड़ ने उन्हें दार्शनिक विचारों और खुले विचारों के कारण हिंसक रूप से मार डाला।

उनकी मृत्यु को प्राचीन ज्ञान युग के अंत और धार्मिक असहिष्णुता की शुरुआत के रूप में देखा जाता है। हाइपेशिया आज भी ज्ञान, तर्क और वैज्ञानिक सोच की प्रतीक मानी जाती हैं।

बहुत पुरानी बात है। सन 415 की बसंत ऋतु का एक सुहाना दिन। अलेक्जेंड्रिया का शहर। शहर की एक खूबसूरत महिला। युवाओं के सपनों की चाहत। बुद्धिजीवियों के दिमागों की खुराक। रोमन साम्राज्य की प्रतिष्ठा। खुले व स्वतंत्र विचारों की एक दार्शनिक। उभरती ईसाइयत के लिए एक बड़ा सिरदर्द। नाम था इसका

हाइपेशिया। अपने रथ में होकर सवार जा रही थी अपने घर। धार्मिक उन्मादियों का एक हुजूम आता है। ये उन्मादी (तथाकथित धार्मिक संत) उस समय के धार्मिक आका सायरिल (अलेक्जेंड्रिया के बीशप) के अंगरक्षक के साथ-साथ उसकी धार्मिक फौज की ताकत भी थे। इनका काम था Pagans (खुले विचारों वाले व्यक्ति जो प्रचलित धर्म को नहीं मानते) का सफाया करना। इनके पूजा स्थलों को ध्वंस करना। सायरिल के इशारों पर ही इन्होंने अलेक्जेंड्रिया के पुस्तकालय को जलाकर नष्ट कर दिया था। इन्होंने ही यह्दियों के घरों को नष्ट किया था। इन्होंने प्राचीन कला को नष्ट किया था। इन्होंने यह्दियों की धार्मिक मूर्तियों (धातु की) को तोड़ दिया। इन्हें पिंघलाकर सोना व अन्य मूल्यवान धातु निकाल ली। इन्होंने यह्दियों के मंदिरों को तोडकर उनके स्थान पर चर्च बनाए।

कॉन्सटेंटाइन सन 306 से 337 तक रोम का गवर्नर रहा। इन्होंने रोम में ईसाइयत को आधार दिया। इनके बाद रोम में ईसाइयों, यहूदियों व स्वतंत्र विचार वाले Pagans के बीच काफी संघर्ष हुए। अब अलेक्जेंड्रिया का गवर्नर था ओरेस्टस और प्रमुख धर्माधिकारी था सायरिल। इन दोनों की आपस में नहीं बनती थी। यद्यपि ये दोनों ही ईसाई थे। यह इसलिए था कि ओरेस्टस हाइपेशिया के प्रभाव में थे। सायरिल, ओरेस्टस को भी मरवाना चाहता था। इन दोनों के बीच द्वंद्व यह था की सत्ता किसके इशारों पर चले।

आ ज निशाने पर हाइपेशिया थी। यह सब हो रहा था सायरिल के इशारे पर। वह

सयरिल जो अलेक्जेंड्रिया का सबसे बडा धर्माधिकारी था। यह स्वयं को सत्ता के सर्वोच्च निर्णय लेने वाला व्यक्ति समझता था। धार्मिक उन्मादियों (तथाकथित संत) ने हाइपेशिया सवारी को रोका। इन्हें पकड़कर नीचे गिराया। इन्हें घसीटते हुए वे इसे एक मंदिर में ले गए। इनके कपडे उतारे। इनकी त्वचा को सीप-घोंघों के खोलों से खुरच कर उतारा ।इनके शरीर के कई अंगों को शरीर से अलग किया। इस लुजपुज शरीर को गली में घसीट कर घुमाया ताकि लोग देख लें। इसके बाद इस अधकचरे शरीर को फिर जला डाला। यह मजाक भी किया गया कि इसे दफनाया नहीं। इस सब अमानवीय कृत्य की अगुवाई पीटर डी लेक्टर कर रहे थे जो उस समय चर्च के सबसे बडे उपदेशक थे। कौन थी यह हाइपेशिया? क्या थी यह? क्यों हुआ यह सब? जुल्मी ऐसा करके क्या सिद्ध करना चाहते थे? धर्मों के इतिहास में प्रायः ऐसी घटनाओं की जानकारियां नहीं मिलती। यहां देवपुरुषों व तथाकथित ईश्वर पुत्रों को अलौकिक शक्तियों से लैस और एक उद्धारकर्ता के रूप में ही चित्रित किया जाता है। इन्होंने

रामदत्त स्ट्रीट बिचला बाजार, भिवानी, हरियाणा 127021

ईमेल : ved.priya@rediffmail.com

हाइपेशिया को रास्ते से हटाकर एक युग के विचार का अंत समझ लिया। इसके बाद एक नए मत की स्थापना का रास्ता साफ कर लिया। यह मत था ईसाइयत।

हाइपेशिया का जन्म सन 355 में हुआ। कुछ इतिहासकार इसे 350AD भी मानते हैं। इनके पिताजी का नाम Theon था। ये उस समय के जाने-माने गणितज्ञ व दार्शनिक थे। यह एक संभात परिवार था। Theon के कोई लड़का नहीं था। कुछ इतिहासकार मानते हैं कि इनका एक लड़का भी था, परंतु इसका कहीं कोई उल्लेख नहीं मिला है। इनके पिताजी ने इन्हें अच्छा पढ़ाया। इन्होंने गणित व दर्शन के साथ-साथ खगोल का भी अध्ययन किया। इन्होंने स्वयं अपने हाथों से कुछ ऐसे Slept बनाए जो खगोलीय अवलोकनों की गणनाओं में काम आ सकते थे। ये कुशाग्र बुद्धि की थी।उन दिनों महिलाओं की शिक्षा आम बात नहीं थी और दर्शन के क्षेत्र में तो महिलाओं की भागीदारी न के समान थी। उन दिनों अलेक्जेंड्रिया में नव अफलातूनवादियों (Neo Platonist) का दबदबा था। ये ऊंचे दर्ज के दार्शनिक समझे जाते थे। ये एक विशेष प्रकार की पोशाक पहनते थे। हाइपेशिया ने भी यह पोशाक पहनी। दार्शनिकों की बैठक में एक महिला का यह पोशाक पहनना बड़ी शान की बात थी। जब ये बोलती थी तो बड़े-बड़े बुद्धिमान व्यक्ति इन्हें ध्यान से सुनते थे। ये प्लेटो के दर्शन की विविध तरह से विवेचनाएं देती थी। ये अपनी बुद्धिमत्ता एवं सोंदर्य के कारण सभी के आकर्षण का केंद्र रहती। दर्शन के क्षेत्र में इन्होंने अपने समकालीन विचारकों को काफी पीछे छोड़ दिया था। सन 400 के आसपास अलेक्जेंड्रिया की प्लेटो अकादमी की ये अध्यक्ष भी बनी। यहां उनके सभी विद्यार्थी पुरुष थे। उस समय के उनके बारे में लिखा गया था — "Exceedingly beautiful and fair of form---in speech articulate and logical in her actions prudent and public spirited, and the rest of the city gave her suitable welcome and accorded her special respect-" उन दिनों देश के हर बुद्धिमान व्यक्ति का यह सपना होता था कि किसी तरह उसे इनकी अकादमी में प्रवेश मिल जाए। प्रवेश के इच्छुक महंगी फीस देने को भी तैयार रहते थे। दर्शन व गणित के क्षेत्र में इन्हें महारत हासिल थी। इसके यहां सभी धर्मों के शिष्य थे।

ये स्वयं को च्हंदपेउ की पक्षधर मानती थी। इन्होंने इस बात को कभी छुपाया नहीं। इन्हें कई बार अधर्मी व विधर्मी भी कहा गया। यूक्लिड व टॉलेमी पर इनका काम ऊंचे दर्जे का था। दर्शन के क्षेत्र में ये उस यथार्थ की खोज में थी जो ब्रह्मांड के अस्तित्व के सार में निहित है। गणित को ये कठिन विषय नहीं मानती थी। इनका कहना था कि ब्रह्मांड को व्यक्त करने की भाषा ही गणित है। इनका कहना था कि ब्रह्मांड गणित का ही एक स्वरूप है। ग्रहों के घूमने में ये संगीत ढूंढती थी। ज्यामिति इनकी नजर में पदार्थ व आत्मा के बीच संबंध स्थापित करने वाली कडी थी।

इन्होंने शादी नहीं की। ये अंतिम दिन तक अपने इरादे पर दृढ़ता से रही। उन दिनों एक महिला का इस प्रकार रहना एक विशिष्ट गुण माना जाता था। इन्होंने अपनी पूरी ऊर्जा अपने ज्ञान में लगाई। इस बात का आप सहज अनुमान लगा सकते हैं कि एक महिला का इस प्रकार रहना कितना दुश्वार रहा होगा। बहुत से नवयुवक इन्हें अजीब निगाहों से देखते थे। कहते हैं कि एक बार एक नवयुवक ने तो प्यार के ज्वार में अपना प्रस्ताव भी इनके पास भेज ही दिया। लेकिन यह स्वीकृत नहीं हुआ। बहुत से नवयुवकों को इनसे ईर्ष्या भी रहती थी।

हाइपेशिया का दर्शन उस समय की ईसाई हुकूमत को रास नहीं आ रहा था। क्योंकि ईसाइयत में अंधानुकरण को एक वरदान माना जाता था। जबिक हाइपेशिया के लिए यह आग्रह ज्ञान के अनुकरण में था। यद्यपि ये नास्तिक नहीं थी।

कॉन्सटेंटाइन तक तो फिर भी विभिन्न विश्वासों के बीच संवाद की कोई गुंजाइश थी। आम लोगों को यह स्वतंत्रता थी कि वे किसी भी तरह की पूजा पद्धित को अपनाए। कॉन्सटेंटाइन से पहले रोमवासियों के दिलों दिमाग पर प्राचीन मिस्र व यूनानी देवी— देवताओं का प्रभाव था। प्राचीन मिस्र के लोग तो प्राकृतिक शक्तियों में ही विश्वास करते थे। जब अलेक्जेंड्रिया जलकर नष्ट हो रहा था तो इन्हीं लोगों ने कुछ बचा कर सुरक्षित रखने की कोशिश की थी। यही से Pagan(स्वतन्त्र विचार) संस्कृति पनपनी शुरू हुई। हाइपेशिया इन्हीं की प्रतिनिधि थी।

कांसटेंटाइन धर्म के मामले में बहुत कट्टर था। इन्होंने अपने ही बच्चे (अपने उत्तराधिकारी) को मौत के घाट उतार दिया था। इन्होंने अपनी पत्नी को भी उबलते पानी में डुबोकर मार डाला था। इन्हें डर था कि कहीं ये Pagans के प्रभाव में न आ जाएं। रोम की अधिकांश जनता कांसटेनटाइन से लगाव नहीं रखती थी। जनता बहुत डरी हुई थी।

कॉन्सटेंटाइन की मृत्यु के कुछ समय बाद तक सामाजिक वातावरण बहुत ज्यादा तनाव भरा नहीं रहा। मामला उस समय ज्यादा गरमाया जब सन 379 में थिएडोसीयस राजा बना। इन्होंने ईसाइयत को राज्य का धर्म घोषित कर दिया। चर्च के पास सत्ता केंद्रित हो गई। उन दिनों चर्च का प्रतिनिधि था थियोफिलस। अब इन्हें Pagans को सबक सिखाने का अवसर मिल गया। उनकी सेना (धार्मिक

उन्मादियों का झूंड) के बारे में बाद के इतिहासकारों ने लिखा है कि ये दिखने में भले ही आदमी नजर आते हों जबकि ये सूअरों जैसा जीवन जीते थे। डेमासियस ने इन्हें पशुओं का झुंड तक कहा था। उनकी धार्मिक कट्टरता इस हद तक चली गई थी कि ये राजा के लिए भी खतरा बन सकते थे। इनकी हिमाकत यहां तक बढ़ गई कि इन्होंने अलेक्जेंड्रिया के सबसे बड़े मंदिर (मिस्र व यूनानी देवता) का नामोनिशान तक मिटा दिया। उसकी प्राचीन कला को नष्ट कर दिया। वातावरण इतना जहरीला हो गया कि Pagans के लिए सांस लेना मुश्किल हो गया। अधिकतर Pagans शहर छोड़कर चले गए और कभी वापस नहीं आए। ईसाइयत हर विरोधी स्वर को खत्म कर रही थी। ये हाइपेशिया को कैसे बर्दाश्त कर सकते

सन 412 में थियोफिलस की मृत्यू हो गई। इनका स्थान उनके भतीजे सायरिल को मिल गया। एक बार तो सायरिल ने ईसामसीह के दैवीय और मानवीय जीवन को एक बना कर लिखने की सोची थी। लेकिन इनके ये प्रयास सिरे नहीं चढे। इन्हीं दोनों अलेक्जेंड्रिया को गवर्नर के रूप में ओरेस्टस मिल गया। ओरेस्टस एक सहनशील विचारों का शासकीय अधिकारी था। पहले ये Pagan ही था, बाद में ईसाई बना था। ये हाइपेशिया के दर्शन के प्रभाव में था। कुछ इतिहासकारों का मत तो यह भी है कि इन दोनों के निकट के संबंध थे। ओरेस्टस च्हंदे और ईसाइयों के बीच खाई को भरना चाहता था ।इन्हें सायरिल का रवैया पसंद नहीं था। ओरेस्टस ने एक बार सायरिल की शिकायत राजा से भी की थी। इससे सायरिल बहुत नाराज था। इन दोनों ने आपस में मिलना– जुलना भी छोड़ दिया था। जब मामला कुछ शांत हुआ तो सायरिल ने ओरेस्टस के पास बाइबल की एक प्रति भेज कर कहा कि

इसका अनुसरण करें, यही सच है। ओरेस्टस ने इसे अपना अपमान माना और सायरिल की अवहेलना की। कहते हैं कि जब धार्मिक उन्मादियों ने हाइपेशिया को रथ से नीचे खींचा था तो इन्होंने ओरेस्टस पर भी फब्तियां कसी थी। सायरिल ने यह बदला लेने के लिए ही 500 उन्मादियों को इकट्ठा किया था। इन्होंने एक बार तो ओरेस्टस को भी घेर कर लिया था। इन पर सरे आम इल्जाम लगाया गया कि यह Pagan है। ओरेस्टस को सफाई देनी पड़ी कि मैं तो कांसटेनटाइन के धर्माधिकारी द्वारा बपतिरमा प्राप्त ईसाई हं। भीड पर इसका कोई असर नहीं हुआ। एक उन्मादी ने तो इन पर पत्थर भी फेंक कर मारा। पत्थर उनके माथे पर लगा और खून बहने लगा। क्योंकि ओरेस्टस तो एक गवर्नर था। इनके साथ इनके भी अंगरक्षक थे। इन्होंने आतंकियों को भगाया और पत्थर फेंकने वाले को गिरफ्तार कर लिया। ओरेस्टस ने इस उन्मादी को सजा दी। कुछ समय के बाद इस उन्मादी की मृत्यु हो गई। सायरिल ने इस उन्मादी को शहीद के रूप में घोषित किया। सन 415 में ओरेस्टस ने अपनी नई उदारवादी राजनीति शुरू की। यह्दियों, Pagans और उदारवादियों ने इनका समर्थन किया। हाइपेशिया इनकी प्रबल समर्थक बनी। हाइपेशिया की पहुंच अब राजदरबार तक थी। सायरिल यह देखकर आग बबूला हो गया। सायरिल समझ रहा था कि यह सब चाल हाइपेशिया की ही है। वह इन्हें सदा –सदा के लिए अपने रास्ते से हटाना चाहता था। सायरिल ने योजना बनाई की हाइपेशिया को सबसे भयावह मौत देनी है। सायरिल ने जानबूझकर अफवाह फैलाई कि हाइपेशिया एक चुड़ैल जादूगरनी है। इसने ओरेस्टस को अपने वश में कर लिया है। इसने ओरेस्टस पर अपना जादू चला दिया है। इसी जादू के कारण ओरेस्टस ने चर्च आना बंद कर

दिया है। यह नास्तिक होता जा रहा है। इसके घर नास्तिकों का आना-जाना हो गया है। धार्मिक उन्मादियों पर इसका तुरंत असर हुआ। धार्मिक कट्टरों का गुस्सा आसमान पर चढ़ गया। इन्होंने ही हाइपेशिया की निर्मम मरम्मत हत्या की। ये हाइपेशिया को घसीट कर उसी मंदिर में लेकर आये जिसे सायरिल ने अपना मुख्यालय बनाया हुआ था । उन्मादियों ने हाइपेशिया की हत्या इन्हीं की देखरेख में की। सायरिल सीधे सरकार पर हमला करने में सफल नहीं हो सकता था सो उसने यही फैसला किया कि सत्ता के सबसे मजबूत स्तंभ दर्शन व ज्ञान के आधार को ही खत्म कर दिया जाए। क्योंकि हाइपेशिया ईसाइयत के लिए एक बड़ी चुनौती बनी हुई थी।

एक प्रकार से यह एक बौद्धिक युग की हत्या थी ।क्लासिक व आधुनिक यूनानी दर्शन का संधि युग थम गया। अलेक्जेंड्रिया के बौद्धिक अखाडे बंद हो गए। अन्य दार्शनिक व विचारक देश छोडकर भाग निकले और ओरेस्टस भी गायब हो गया ।इन्हें भी डर था कि उनके साथ भी ऐसा हो सकता है। अलेक्जेंड्रिया का सबसे बड़ा सेरापियम का मंदिर जो सेरापिस देवता के नाम पर था. तोड दिया गया। सेरापिस को ही अलेक्जेंड्रिया का रक्षक माना जाता था। हाइपेशिया के समस्त लेखन को जब्त कर लिया गया ताकि यह आने वाली पीढ़ियों तक न पहुंच सके। इसका केवल कुछ प्रतिशत किसी तरह बच गया। इस ज्ञान को पुनर्जीवित होने में सदियां लगी। पुनर्जागरण काल में इसका पता चलना शुरू हुआ। चर्च ने इस घटना को जश्न के रूप में मनाया था। सायरिल को 'डॉक्टर ऑफ चर्च' की उपाधि से नवाजा गया। उसे संत का दर्जा मिला। उसे थियोफिलस के अवतार के रूप में माना गया। हाइपेशिया १४०० वर्षों तक गुमनामी में रही। पश्चिम ने भी इसकी सुध बहुत देर से ली।

हिंदी कविता

सामानों के ढेर में सुख तलाशता मन

राणा प्रताप सिंह

जानता हूँ एक न एक दिन मैं भी जाऊँगा आप सबकी तरह ही / छोड़ कर सारा सामान साथ नहीं जाएगा / कुनबा , किताबें / धन — धान्य।

प्रियजन, मित्र और शत्रु छूट जाएंगे पीछे। तत्वों, विचारों, व्यवहारों और सिद्धांतों की तरह ही धुआँ और आग बनते हाड़— मांस के शरीर को सिवाय एक सूखे पेड़ की लकड़ी के थोड़े से बिखरे हुए धूप, घी और अक्षत के।

मन और अंग—प्रत्यंग जो भटकते रहे पल—प्रतिपल जागते सोते जाने कहाँ —कहाँ जानी अनजानी जगहों पर तलाशते हुए कोई सुख जो कोई नहीं जानता कहाँ मिलेगा आत्मा भी नहीं जायेगी साथ जिसको अजर—अमर मानते हैं, ढेर से लोग जिसे विश्लेषित नहीं कर पाए वैज्ञानिक पदार्थ और ऊर्जा की गति मापने की अनेक मशीनों के ईजाद के बाद भी।

कोई गद्दा, रजाई, तिकया, मसनद, घर, बागान, खेत, कारखाना तिजोरी, लाकर, अलमारी संदूक सोना, हीरा, माणिक, रत्न नहीं जाएगा साथ चीख—पुकार, आंसू—यादें, वाद—विवाद, यश—अपयश रह जायेंगे अपने —अपने ठौर।

सारी उम्र यूँ ही जुटाता रहा मैं न जाने कितने सामान जिसे बनाने के लिए उद्योगपतियों ने खोद दिया दुनिया भर में जमीन पहाड़ तोड़ दिए विस्फोटक लगा—लगा कर / नदियों को भर दिया जहाँ— तहाँ। गंदगी और गाद में बेतहाशा जहर मिलाकर।

जल—जंगल—जमीन और प्राण वायु को विषाक्त कर दिया कारखानेदारों ने। आसमान को धुँधला कर दिया धुआँ, धूल और धुंध से मेरे लिए ढेर सारा सामान बनाने के लिए जो काम नहीं आयेगा

मकान नं0 247, सेक्टर—2, उद्यान—2, एल्डिको, रायबरेली रोड, लखनऊ—226025

ईमेल : dr.ranapratap59@gmail.com

जिसके लिए मौसम को कर दिया गया गर्म पेड़ो को काटकर उजाड़ दिए गए जंगल और पहाड़ सुखा दिए गए कुएं, तालाब, झील, नदियाँ और समुद्र युद्ध छेड़ दिया एक—दूसरे से वर्चस्व और विनाश के लिए

विज्ञान को बना दिया गया विनाश का संयंत्र और अर्थशास्त्र को खड़ा कर दिया गया प्रकृति के खिलाफ अखबार और टी बी चैनलों में बटते दिग्भ्रमित उत्तेजक ज्ञान से मैं तलाशता रहा अपना युग—धर्म मेरी संस्कृतियां बँधी रही खूँटें से बंधे पालतू की तरह फोन के स्क्रीन में खोजती हुई बेचैनी से राहत मैं उलझता गया उत्तेजना के उद्देलन से उपजे वर्चुअल भ्रमजाल में लम्बे समय तक लगातार।

मेरे साथ जाने वाला वह अ चिन्हा पेड़ कहीं बूढ़ा हो रहा है मेरी ही तरह तैयार कर रहा है मेरे लिए लकड़ी मेरे साथ एक अजाने अंतिम अग्नि स्नान के लिए जाने कितने और कैसे हैं, पत्ते, फल, फूल उसके कितनी गहरी जड़े हैं मिट्टी को पानी और पानी को पेड़ से जोड़ती हुई।

जाने कैसी है वह गिलहरी जो दौड़ती—भागती रहती सूँघती हुई पेड़ की देह गंध सैकड़ों तरह के हजारों कीड़े — मकोड़े रेंगते हुए डाल —डाल पत्ता—पत्ता जड़ों से मिट्टी और तने से टहनियों और पत्तों तक आते —जाते कतारबद्ध पक्षियों की पंचायत और पतंगों की भुनभुना हट जिनका घर है वह पेड़ द्य

एक नदी जो सूखती जा रही होगी धीरे —धीरे उसके किनारे की एक जगह कसमसा रही होगी उस अग्नि ताप को सहने के लिए जो मेरे और उस पेड़ के साथ धधक उठेगा एक दिन द्य बहुत से लोग और बहुत से अ लोग जो मेरे साथी हैं इस दुनिया में और जिनसे अभी भी नहीं हुई है मेरी जान —पहचान वे खोये हैं अब भी इन सामानों की भीड़ में द्य

चलो छोड़ो तोड़ो अब इन सामानों का भ्रमजाल आओ निकलें उन अ—चीन्हे साथियों की तलाश में तोड़े इस वस्तुगत और वर्चुअल विध्वंस के वैश्विक मायाजाल को अपने साहस से पानी पेड़ पर्वत पत्थर मिट्टी वायु आकाश और अग्नि सबको समेटे अपने भीतर और बाहर पहल करें छूटे लोगों वनस्पतियों जीवों सूक्ष्म जीवों विचारों और व्यवहारों तक पहुँच बनाते हुए

भोजपुरी आलेख

सामाजिक उत्थान मे मातृभाषा क योगदान

नरसिंह

मनई समूह में रहेवाला जीव हवे। अपना के सुरक्षित रखे खातिर आ अपनी जरूरत के पूरा करे खातिर अपन संगी साथी तलाश कईलन। काहेकि उ समूह में रहल चाहत रहलन। एक दूसरे से मिलीजुली के रहल उनकर स्वभाव रहे उ अकेला ना रही सकत रहलन।

मनई लाखों बरिस पहिले एह धरती पर अकेले आईल। ओकर केहू परिचित ना रहल। सोचीं ओ समय उ केतना असुरक्षित महसूस करत होई। आआपन दुख दर्द पीड़ा के केकरा से कहित। एह विषम परिस्थिति मे अपना अस्तित्व के रक्षा कईल केतना कठिन रहे जरा सोची के देखीं। मानव अपनी साथी की खोज मे एने ओने भटकत रहे। कालांतर मे जब उ दूसरे मनई से मिलल होई त ओकरा केतना खुशी मिलल होई। दूनू एक दूसरा से अपरिचित, मन मे भय आ सहयोग की आशा की साथ एक दुसरे क निकट आईल होई। संघर्षमय जिनि गी तमाम चुनौती के झेलत एक दूसरे क समझे बुझे आ आपन दुख दर्द सुने सुनावे क अवसर मिलल। अनभिज्ञता मे भिज्ञता क अनुभव केतना सकून देले होई।

साँच त इ होई कि उ लोग अपनी भाव क आदान प्रदान संकेत में कइले होई लोग। काहेकि दुनु जाने एक दूसरा कि भाषा से अनजान रहे लोग। बाद में उ लोग मुखर भईल आ समय भाषा के जिरये उनके निकटता की सूत्र में बाँधी देहलसी। आपस में मिलीजुली के रहे लागल लोग। ओह समय केतना अच्छा लागत होई सोची के देखीं। इ निकटता क माध्यम भाषा ही ह। बोली चाहें संकेतकी रूप में। इहे उनकर मातृभाषा होई। मातृभाषा खाली आपसी संवाद क माध्यम ना ह बल्कि सामाजिक संरचना क आधारभूत तत्व हवे। भाषा एक दूसरे के सुख दुख क समझे, भौतिक, मानसिक आ सामाजिक, आत्मिक विकास क अवसर तलासे के खातिर परमात्मा के दिहल अवदान ह। भाषा समाज के सांस्कृतिक, बौधिक आ भावात्मक पहिचान क आधार हवे। भाषा उ तत्व ह जवन मनई से मनई के जोडी के सभ्यता की उषाकाल से रखले बा आ आजू भी सामाजिक एकता अउरी सांस्कृतिक धरोहर क प्रतिक बा। भाषा आदिमि के अपना जड से जोडेला आ सामाजिक एकता के बढावेला। मातृभाषा मानव संस्कृति क अनमोल रतन हवे। शिक्षा आ संस्कृति क संरक्षण क आधार ह। मातृभाषा क उपेक्षा मनई क सर्वांगीण विकास के अवरूद्ध क देई सामाजिक संरचना चूर चूर हो

मातृभाषा मनई की भीतर से ही निकलल बा। इ सहज आ स्वाभाविक होला। आपसी संबन्धन क बनवले रखेके महान तत्व भाषा ही हवे। मानव इतिहास बनावेके सशक्त माध्यम भाषा ही ह

मनई अपना नजदीक मिलेवाला चीजन के स्वभाव आ गुन की अनुसार अपनी मातृभाषा में ही नामकरण कईले बा। मनई ना रहित त संसार क वस्तुवन के नाम के रखित।

भाषा की माध्यम से सभे बिषय अभिप्रकाशित होला। ज्ञान जवने भाषा में प्रकाशित बा ओकर ज्ञान ना रहला से ओसे अपरिचित ही रही जाला। सामाजिक संबंध बनवला में मातृभाषा के महत्वपूर्ण योगदान बा। मातृभाषा लोगन की आपसी संबन्ध में प्रगाढ़ता लावेला आ आनन्दमय माहौल बनवला में मुख्य भूमिका निभावेला।

सब बिषयन के सभे मातृभाषा, राष्ट्रभाषा आवे िश्व क का जनसंपर्क कि भाषा में प्रकाशित रहला की फलस्वरूप सब मनई

ज्ञानवान हो जइहे। सभे भाषा क सरकारी स्तर पर मान्यता मिलेके चाहीं। अइसन ना भईला पर सबके विकास संभव नईखे। भाषा उ तत्व ह जवना की माध्यम से मानव के विवेक विकसित होला। विकासशीलता क शक्ति बढेला, युक्ति के सामर्थ बढेला। जेकरी फल से मनई मुक्त बुद्धि हो जाला। कवनो भी समाज के सब प्रकार के विकास खातिर इ जरूरी बा ओ समाज की लोगन मे सामाजिक, आर्थिक, सांस्कृतिक जागरूकता भईल । एकर मातृभाषा ही आधार बाटे । भाषा की साथ सामाजिक, आर्थिक आ सांस्कृतिक विकास क घनिष्ठ संबंध बाटे। भाषा जवने तरह से अपने भीतर निहित भाव आ विचार के व्यक्त करेके जरिया ह ओही तरह से मनई की प्राण धर्म की साथे साथे अपुथक रूप से जुड़ल बाटे। कवनो भी आदिमि अपना मातृभाषा मे जवने तरह स्वतन्त्र आ सहज रूप से व्यक्त क सकता ओ तरह से दूसरे कवनो भाषा मे नईखे क सकत। ओकरा बतीयवला मे दिक्कत होला उ असहज हो जाला आ धीरे धीरे ओकर प्राण शक्ति कमजोर हो जाला। अइसन हाल मे उ आदिमि आ समाज की भीतर एगो मनोवैज्ञानिक संकट पैदा हो जाला। ओकरा अन्दर हीन भाव आ जाई जवन लोगन क मानसिक दुर्बलता

पूर्व प्रधानाचार्य, उमानगर, उत्तरी देवरिया, उत्तर प्रदेश–274001

ईमेल : ssm1955-narsingh@gmail.com

क कारण हवे। नैतिक साहस, उत्साह, संघर्ष करेके क्षमता कम आ नष्ट हो जावेला। लोग शिर उठाके चली ना पावेला अउर शोषण क राही खुली जाला।

सगरो भाषा के विकास करेके समान मौका देवेके होई। भाषा क प्रति देशी, विदेशी, राष्ट्रीय अंतरराष्ट्रीय कवनो प्रकार के भेद ना होखेके चाहीं। इ लोगन की शुभ बुद्धि आ शुभेक्षा पर निर्भर करत बा। समाज के मतलब होला सब लोग के मिलिके एक साथे चलल आ एह काम मे मातृभाषा क बढ़हन भूमिका होखेला। समाज मे भाईचारा आपसी सहयोग, त्याग, सेवा जइसन सामाजिक मूलयन की स्थापना क एकमात्र सूत्र मातृभाषा ही ह। एसे सब भाषा के संवैधानिक मान्यता देवेके होई। साथे साथे इहो देखेके होई कि कवनो भाषा कवनो के नोकसान ना क सके। भारत जइसन बहुभाषी देश मे एगो अइसन सब लोगन के स्वीकार भाषा क जनसंपर्क भाषा की रूप मे

व्यवहार कइल उचित होई, जवना पर देश क सभे भाषा आधारित होखे। समय की प्रवाह में विभिन्न भाषा की विकास के क्रम में एगो राष्ट्रीय भाषा विकसित हो जाई जेके लोग प्यार से अपना लेई। मानव समाज के निर्माण आ ओकरा विकास की साथ साथ मनई क भौतिक मानसिक आत्मिक प्रगति के आधार भाषा ही ह। मातृभाषा मानव समाज क आधारशिला हवे।

सामाजिक उन्नित के एगो मुख्य घटक ह शिक्षा। जवना की संबंध में संसार के सगरो शिक्षाविद लोग एक स्वर से स्वीकार कईले बा कि मातृभाषा में शिक्षा देहला से अधिगम क्षमता बच्चन में अधिक होला शिक्षा आ भौतिक विकास में मातृभाषा में शिक्षा प्रभावकारी कदम हवे। यूनेस्को कहले बा की शिक्षा शिक्षार्थीयन के उनकी मातृभाषा में ही देवेके चाहीं। शिक्षा में मातृभाषा के प्राथमिकता देहल जा जवना से सब अपनी संस्कृति आ प्रयावरण क प्रति संवेदनशील बने लोग। भाषा विभाजन क साधन ना ह इ एकता के सेतू ह। मातृभाषा के सम्मान आ दूसरी भाषा के भी आदर होखेके चाहीं।

धर्मेंदर प्रधान जी कहले बानी कि मातृभाषा ज्ञान प्राप्ति, अभिव्यक्ति आ विचारन क विनिमय के सबसे उचित माध्यम हवे।

एह तरे स्पष्ट बा कि सामाजिक उन्नति मे सबसे अधिक योगदान मातृभाषा के ही बा।

मातृभाषा मानवता क धरोहर ह। एकर दमन, आत्मसम्मान, स्वभाविक प्रगति आ आर्थिक विकास के नष्ट करी देला। इतिहास चेतावता कि मातृभाषा क संकीर्ण व्याख्या आ दूसरा भाषा के थोपल सामाजिक विघटन क कारण बनी सकेला।

एसे मातृभाषा के सम्मान करीं एके सामाजिक विकास क सेतू बनाई। मातृभाषा के अवदमन पाप आ ईश्वरी अवदान क अनादर हवे।

मन को यूँ बहलाना क्या

राणा प्रताप सिंह

उसने बेंचा पानी पोखर, तुमने सपने बेंच दिए अब तो रुक जा ऐ सौदागर, अब इतना भरमाना क्या ?

चोर उच्चक्के गली -गली में, महलों से खिलहानों तक सोने वाले नींद में माते उनको कुछ बतलाना क्या ?

हमने बोए राह में काँटे, फूल कहाँ से उग आते जो राहें घनघोर अँधेरी, उन पर आना जाना क्या?

दिल के भीतर ख़ौफ़ भरा है, ऊपर- ऊपर हँसतें हैं खुशियों पर चिंता का पहरा, मन को यूँ बहलाना क्या ?

हरियाली पर बंजर भारी, हवा में है जहरीली धूल जिस विकास से मौसम रूठा, उस पर यूँ इठलाना क्या ? सबसे बड़ी लड़ाई खुद से, दुश्मन बैठा दिल के पास मनके भीतर शोर मचा है, अपना क्या, बेगाना क्या ?

जबसे हमनें कहना सीखा, बहुत कहा पर बोला कम लिख-लिख कर कागज पर रखता, अपना दुर्द सुनाना क्या ?

आपसे अब मैं कितना बाँटू , पोर -पोर है , भरा हुआ जो-जो रिश्ते रास न आए, उनकी बात बताना क्या ?

बरस बीत गए कहते -सुनते , लोगों से यूँ दिल की बात किसने क्या की काना -फुस्सी ,अब सबको बतलाना क्या ?

('छूटे हुए लोग', पृथ्वीपुर अभ्युदय समिति, लखनऊ और एम आर आई पब्लिकेशन प्राइवेट लिमिटेड, लखनऊ द्वारा प्रकाशित पुस्तक से साभार)

भोजपुरी आलेख

सांस्कृतिक कूटनीति में भारत आ भोजपुरिया पहचान के भूमिका

रवीन्द्र नाथ श्रीवास्तव 'परिचय दास'

आजु के समय में जब देश आपसी सम्बन्ध के नव रूप में परिभाषित करत बाड़ें, त उहंवा 'सांस्कृतिक कूटनीति' एगो अइसन माध्यम बन के उभरल बा जे राजनीतिक आ आर्थिक संबंध से बाहर निकल के दिल के रिश्ता बनावे के ताकत राखेला। भारत, जे हजारों बरिस से संस्कृति, अध्यात्म, संगीत, भाषा, नृत्य, दर्शन आ कला के धरोहर के जोगा के राखले बा, ओकरे चलते सांस्कृतिक कूटनीति के क्षेत्र में एक प्रमुख भूमिका निभावे के योग्यता राखेला।

भारत के विदेश नीति अब बहुआयामी हो चुकल बा। सैन्य शक्ति आ आर्थिक विकास के साथे-साथ अब देश के 'सॉफ्ट पावर' के भी महत्व समझल गइल बा। एह 'सॉफ्ट पावर' के मूल में संस्कृति आ परंपरा बा। भारत सरकार के 'भारतीय सांस्कृतिक संबंध परिषद' (प्ब्द्), विदेश मंत्रालय, आ दुनियाभर में फैले भारतीय दूतावास अब सक्रिय रूप से भारतीय सांस्कृतिक पहचान के प्रसार में लागल बा। योग, आयूर्वेद, क्लासिकल संगीत, नाट्यशास्त्र, भारतीय दर्शन, भारतीय सिनेमा, हिन्दी साहित्यकृई सब अब दुनिया के सामने भारत के कोमल, लेकिन मजबूत छवि के रूप में देखावल जात बा।

अब सवाल उठेला कि एह वैश्विक मंच पर भारत के क्षेत्रीय संस्कृतियन के कइसे समुचित प्रतिनिधित्व दीहल जाय। एह संदर्भ में भोजपुरी संस्कृति के भूमिका दिन—प्रतिदिन बढ़त जा रहल बा। भोजपुरी भाषा खाली एक बोली ना हकुई एगो जीवंत सांस्कृतिक इकाई ह, जवन आपन लोकज्ञान, लोकसंगीत, साहित्य, आ जीवनदृष्टि के संगे हजारों मील दूर ले गइल बा।

भोजपुरी संस्कृति के अंतरराष्ट्रीय रूप में देखे खातिर हमनी के थोड़ा इतिहास में झांके के पड़ी। उन्नीसवीं सदी में जब भारत से हजारों लोग मारीशस, सूरीनाम, त्रिनिदाद, फिजी, गुयाना आ अन्य जगह गन्ना के खेतन में मजदूरी करे गइलें, त ऊ लोग आपन भाषा, गीत, कथा, देवता, भोज, व्रत आ उत्सव के भी संगे ले गइल। आजु मारीशस के राष्ट्रगान में भारतीय आत्मा के स्पंदन बा, उहंवा के लोग आजो छठ मनावेला, बिदेसिया गावेला, आ भोजपुरी के सम्मान से देखेला।

सांस्कृतिक कूटनीति के संदर्भ में भोजपुरी समाज के उपस्थिति एह बात के प्रमाण बा कि एगो लोकभाषा आ लोकसंस्कृति भी वैश्विक संवाद के साधन बन सकेले। अगर भारत सरकार भोजपुरिया लोकसंस्कृति के रणनीतिक रूप से प्रस्तुत करे, त इ ना खाली प्रवासी भारतीयन के संगे भारत के संबंध मजबूत करी, बलुक स्थानीय जनसमुदाय में भी भारतीय संस्कृति के प्रति सम्मान बढाई।

भोजपुरी में लोकगीत के परंपराकृसोहर, कजरिया, बिरहा, निर्गुण, आल्हा, फाग, चइताकृई सब अकेले गीत ना ह, ई जीवन—दर्शन ह। एह गीतन में खेती, परिश्रम, प्यार, बिछोह, संघर्ष, विश्वास आ अध्यात्मकृसब कुछ मिलेला। अइसन रचना जवन जनता के दिल से निकल के, दिल में समा जाला, ऊ दुनिया के सबसे असरदार सांस्कृतिक औजार बन सकेला।

आजु के सांस्कृतिक कूटनीति में जवन सबसे जरूरी बात बा, ऊ बा सांस्कृतिक प्रस्तुति के प्रामाणिकता। भोजपुरिया संस्कृति के प्रतिनिधित्व करे वाला फिल्मन, नाटक, आ साहित्य में अगर उ संस्कृति के आत्मा के बचावल जाई, त ऊ बहुत दूर ले जाई। भोजपुरी सिनेमा में अगर विषय—वस्तु के परिष्कार होई, भाषा के गरिमा बनी रही आ तकनीकी गुणवत्ता में सुधार होई, त ऊ सांस्कृतिक दूत के रूप में उभर सकेला।

जइसे मारीशस में 'विश्व भोजपुरी सम्मेलन' के आयोजन भइल, वइसहीं भारत सरकार अगर हर साल दिल्ली, पटना, लखनऊ, बनारस , मुंबई आदि अन्य जगहन में अंतरराष्ट्रीय भोजपुरिया सांस्कृतिक सम्मेलन आयोजित करे लागे, त ई ना खाली सास्कृतिक समृद्धि के संजोग होई, बलुक राजनीतिक कूटनीति में भी भारत के जनसांस्कृतिक पहुँच के गहिराई मिली।

एह कूटनीतिक उपक्रमन के संग—साथ भारत सरकार के चाहीं कि उ भारत आ विश्व में 'भोजपुरी विश्वविद्यालय' के साथे विभिन्न भारतीय आ विदेसी विश्वविद्यालयन में 'भोजपुरी अध्ययन केंद्र' के स्थापना करे, जे भोजपुरी के भाषा, व्याकरण, साहित्य, इतिहास, संगीत आ संस्कृति पर शोध कर सके। फिजी, मारीशस, सूरीनाम आ ट्रिनिडाड जइसन देशन में भोजपुरी के प्रोफेसर लोग तइयार बा लेकिन उ लोग के साथे संस्थागत संवाद के कमी बा।

भोजपुरी में साहित्यिक आंदोलन के भी पुनर्पाठ जरूरी बा। सत्ते बा कि अब तक हिंदिए पर आधिकांश ध्यान देहल गइल बा, बाकिर भोजपुरी में महिंदर मिसिर, भिखारी ठाकुर, पांडेय कपिल, रामेश्वर सिंह 'काश्यप' आ

हिंदी विभाग, ९ नालान्दा महाविहार (समविश्वविद्यालय) नालन्दा–803111

ईमेल : parichaydaspoet@gmail.com

आज के लेखक सबके योगदान के अंतरराष्ट्रीय स्तर पर अनूदित क के प्रस्तुत कइल जाय के चाहीं। एह से ना खाली भारतीय संस्कृति के बहुरंगी रूप सामने आई, बलुक भोजपुरी साहित्य भी 'विश्व साहित्य' के हिस्सा बन सकेला।

अइसन स्थिति में 'कूटनीतिक सांस्कृतिक प्रस्तुतीकरण' में भोजपुरिया नारी के स्वरो के समुचित स्थान मिले के चाहीं। आज भी छठ गीतन में जवन संवेदना बा, ओकरे सहारे भारत के 'नारी—शक्ति' के वैश्विक प्रस्तुति कइल जा सकेला। भोजपुरी नारी साहित्य, गीत, रसोई संस्कृति, मातृत्व आ जीवन—दर्शन के एक नया दृष्टिकोण से प्रस्तुत कइल जा सकेला।

विदेश में रहने वाला भोजपुरिया समाज आजो अपन भाषा, भोज, परिधान, लोकाचार आ पर्व—त्योहार से आपन जड़ बनवले बा। अगर ई प्रवासी समाज भारत सरकार के सांस्कृतिक कूटनीति के भाग बने, त ऊ दुनियाभर में भारत के सांस्कृतिक संदेशवाहक हो सकेला। एकरा खातिर सिनेमा, सोशल मीडिया, ओपन थिएटर, रेडियो प्रोग्राम, लोकनृत्य कार्यशाला, भोजपुरी साहित्य—समारोह, ई सब के आयोजन जरूरी बा।

सां स्कृतिक कूटनीति एकर निरंतरता पर टिकल होला। भोजपुरी समाज के भीतर आ बाहर, दूनो जगह, अगर निरंतर प्रयास होई, त एक दिन अइसन आई जब भारत के भाषाकृभोजपुरी, मैथिली, अवधी, मगही आदिकृविश्व मंच पर भारत के असली सांस्कृतिक प्रतिनिधि बन के उभरिहें।

आज के समय में जरूरत बा कि भोजपुरी के देखल जाय एक ऐतिहासिक, सांस्कृतिक आ राजनयिक सम्पदा के रूप में। भोजपुरी में जवन आत्मीयता बा, जवन सहजता बा, ओहमें दुनिया के जोड़ के रखे के ताकत बा। हमनी के चाहीं कि भोजपुरिया संस्कृति के, राजनीति से ना, बलुक संस्कृति आ आत्मा से जोड़ के दुनिया के सामने ले जावीं।

जइसे कबीर, धरनीदास आ लोरिक के परंपरा के अन्तरराष्ट्रीय स्वरूप में पेश कइल जाय, त भारत के आध्यात्मिक पहचानो गिहर होई। एही के सांस्कृतिक कूटनीति कहल जालाकृजे राजनीति से ना, मनुष्यता से राष्ट्र बनावेला।

सा स्कृतिक कूटनीति में भोजपुरिया पहचान के भूमिका एगो छोट नइखे, बलुक इ ऊ भूमिका ह जवन दिल से दिल जोड़ेला, भाषा से भावनात्मक बंधन बनावेला, आ भारत के आत्मा के स्वरूप बनावेला। एह स्वरूप के समझे वाला आ दुनिया में प्रस्तुत करे वाला भोजपुरिया समाज आज जाग रहल बा। अब जरूरत बा कि देश के नीति—निर्माता लोग एकरा आवाज सुने आ एकरा के सशक्त मंच देवे।

भोजपुरीकृना खाली भाषा ह, ना खाली क्षेत्रीयता के सीमित पहचान, बलुक ई भारत के लोक—आत्मा के विश्व—पटल पर स्वरूपित करे के समरथ माध्यम ह। एकरा जरिये भारत 'वसुधैव कुटुम्बकम' के भावना के, सचमुच में, जियत जागत प्रमाण बना सकेला।

भोजपुरी संस्कृति के जे विशेषता बा, उ एकर बहुलता, जीवंतता आ जनसाधारण से जुड़ल स्वाभाविकता ह। एह संस्कृति में ना केहू के बनावट बा, ना ओढ़ल—पहनल दिखावाकृबलुक जे बा, ओहमें सहजता बा, आत्मीयता बा, आ गँवई मिठास बा। एह गँवई मिठास के महत्त्व सांस्कृतिक कूटनीति में तब अउरी बढ़ जाला जब हम एकरा के आधुनिक संप्रेषण माध्यमन के जरिए प्रस्तुत करे के बात सोचीलें।

आजु के समय में डिजिटल प्लेटफॉर्म पर भोजपुरिया गीत, कहानी, हंसी—मजाक, खाना—बनावन, धार्मिक परंपरा, आ लोकपर्व के वीडियो वायरल हो रहल बा। ई बतावेला कि भोजपुरिया संस्कृति के जनस्वरूप में एगो सहज वैश्विक स्वीकार्यता बा। अब जरूरत बा कि भारत सरकार आ राज्य सरकार मिल के एह अनौ पचारिक संस्कृति—प्रसार के औपचारिक समर्थन देस। माने किकृभोजपुरी भाषा में सरकारी यूट्यूब चैनल, रेडियो प्रसारण, डिजिटल डॉक्यूमेंट्री, अंतरराष्ट्रीय

सेमिनार आ सांस्कृतिक कारवाँ के रचना होखे।

एह प्रसंग में ध्यान देवे लायक बात बा कि भोजपुरी खाली भारत में ना बोले जाले, बलुक नेपाल, मारीशस, फिजी, सूरीनाम, त्रिनिदाद, दक्षिण अफ्रीका, आ अमेरिका तक में भोजपुरिया लोग बसल बा। अगर भारत सरकार विदेश मंत्रालय के जरिए इन देशन के सांस्कृतिक कार्यक्रमन में भोजपुरी प्रतिनिधित्व तय कर देवे, त उहंवा के प्रवासी समाज ना खाली भावनात्मक रूप से भारत से जुड़ जाई, बलुक ओह देशन में भारत के प्रति सौहार्द्रपूर्ण माहौल भी बन जाई।

भोजपुरी संस्कृति के एगो अउर बड़ खासियत बाकृएकर समावेशिता। ई संस्कृति परंपरा आ नवाचार के संगे चल सकेला। पुरनिया बिरहा, सोहर, आ निर्गुण के संगे आजु के रैप, भोजपुरी रॉक बैंड, आ शास्त्रीय लोक—पयूजन गाना भी परवान चढ़ रहल बा। अगर सरकार अइसन नवाचार के प्रोत्साहन देके ओहमें लोकगाथा, लोकनायक आ लोकचेतना के समावेश करे, त ई भोजपुरिया सांस्कृतिक कूटनीति के नया ऊँचाई दे सकेला।

अंतरराष्ट्रीय फिल्म फेस्टिवल में भोजपुरी फिल्मन के भी एगो श्रेणी तय हो सकेला। लेकिन शर्त ई बा कि उ फिल्म भोजपुरिया अस्मिता के यथार्थ के साथे प्रस्तुत करे, ना कि सिर्फ बाजारू मसाला पर टिकल रहे। शिक्षा मंत्रालय अगर भोजपुरी भाषा में अनुवादित क्लासिक साहित्य, दर्शन आ समकालीन विमर्श के किताब प्रकाशित करे, त विदेशी विश्वविद्यालयन में भोजपुरी अध्ययन विभाग खोलल जा सकेला।

कहें के तात्पर्य ई बा कि सांस्कृतिक कूटनीति में भोजपुरिया उपस्थिति ना खाली मुमिकन बा, बलुक जरूरी बा। एहके नीति, योजना आ निष्पादन के धरातल पर ले आवे के बा। भोजपुरी में बोले वाला करोड़ों लोगन के सांस्कृतिक स्वाभिमान के अंतरराष्ट्रीय स्वरूप देवे से भारत के 'सॉफ्ट पावर' बहुते मजबूत होई। अइसन शक्ति जे युद्ध ना, बलुक संस्कृति से संबंध बनावे।

(संस्कृत संस्कृति)

संस्कृतः सनातन चेतना की दिव्य अभिव्यक्ति

शुभम बाजपेयी

संस्कृत, केवल एक भाषा नहीं, बल्कि एक जीवंत परंपरा है जो भारत की आत्मा और सनातन ज्ञान की मूलधारा का प्रतिनिधित्व करती है। इसे "देववाणी" कहा गया है — अर्थात् देवताओं की वाणी, क्योंकि इसी भाषा में वैदिक ऋषियों ने ब्रह्मा से प्राप्त ज्ञान को शब्दबद्ध किया। संस्कृत, 'सं' और 'कृत' से बना है, जिसका अर्थ है — 'सुसंस्कृत' या 'संवर्धित'। यह भाषा मानव मन की उच्चतम सोच और चेतना को अभिव्यक्त करने का माध्यम रही है।

महर्षि पाणिनि द्वारा रचित "अष्टाध्यायी" व्याकरण ग्रंथ संस्कृत भाषा की वैज्ञानिकता का प्रतीक है। इसे विश्व का पहला औपचारिक व्याकरण माना जाता है। पाणिनि ने कहा दृ "वर्णानाम् अर्थसंघानाम् योगः शब्दः।" अर्थात् ध्वनि और अर्थ के मेल से शब्द उत्पन्न होता है। यह परिभाषा आधुनिक भाषाविज्ञान के लिए भी प्रासंगिक है।

संस्कृत की एक विशेषता इसकी धातु—प्रधान संरचना है। प्रत्येक शब्द किसी न किसी क्रिया या क्रिया—रूप से उत्पन्न होता है, जिससे अर्थ की स्पष्टता और उद्देश्य की गहराई बनी रहती है। उदाहरणस्वरूप, "गम" धातु से 'गच्छति' (जाता है), 'गमन' (गमन करना), 'गामी' (जानेवाला) जैसे अनेक शब्द बनते हैं।

संस्कृत की गहनता केवल शब्दों तक सीमित नहीं है, अपितु यह भाषा विचारों, भावनाओं और जीवन के प्रत्येक क्षेत्र में व्याप्त है। "सा विद्या या विमुक्तये"। यह उपनिषद वाक्य बताता है कि शिक्षा वही है जो मुक्ति की ओर ले जाए। संस्कृत इसी मुक्ति की भाषा है आत्ममुक्ति, बंधनमुक्ति और अज्ञानमुक्ति की।

संस्कृत ग्रंथों में भौतिक और आध्यात्मिक दोनों क्षेत्रों का समान महत्व रहा है। चरक संहिता, सुश्रुत संहिता, बृहत्संहिता, अर्थशास्त्र, नाट्यशास्त्र जैसे ग्रंथ आज भी अपने विषय में अद्वितीय हैं। वैदिक गणित, खगोलशास्त्र, वास्तुशास्त्र जैसे शास्त्रों में आधुनिक वैज्ञानिक सोच की गहराई दिखाई देती है।

भगवद्गीता का यह श्लोक अत्यंत प्रसिद्ध है:

"कर्मण्येवाधिकारस्ते मा फलेषु कदाचन।

मा कर्मफलहेतुभूमि ते संगोऽस्त्वकर्मणि।।"

इसका अर्थ है — "तुझे कर्म करने का ही अधिकार है, उसके फलों में कभी नहीं। तू कर्मफल का कारण मत बन और अकर्म में भी आसक्त मत हो।" यह दर्शन आज भी प्रबंधन, नेतृत्व, और आत्मविकास की प्रेरणा देता है।

संस्कृत की एक और विशेषता है उसका उच्चारण—शुद्धि और लयबद्धता। संस्कृत श्लोकों के उच्चारण से उत्पन्न ध्वनियाँ न केवल आध्यात्मिक रूप से, बल्कि वैज्ञानिक रूप से भी लाभकारी मानी जाती हैं। आधुनिक न्यूरोलॉजी के अनुसार संस्कृत मंत्रों के नियमित जप से मस्तिष्क की गतिविधियों में संतुलन आता है और एकाग्रता में वृद्धि होती है।

संस्कृत केवल पुरातन काल की भाषा नहीं है, बल्कि आज के युग में भी इसकी उपयोगिता उतनी ही प्रासंगिक है। संस्कृत में कंप्यूटर प्रोग्रामिंग के लिए भी स्पष्टता और संरचना है, इसलिए इसे "Most suitable language for Artificial Intelligence" भी कहा गया है।

संस्कृत साहित्य की समृद्धि अत्यंत व्यापक है। महाकाव्य रामायण, महाभारत; दर्शन सांख्य, योग, मीमांसा, वेदांत; अलंकार शास्त्र, नीति शास्त्र, कथा

साहित्य, नाटक आदि सभी विधाओं में संस्कृत में विश्व की सर्वश्रेष्ठ कृतियाँ रची गई। कालिदास, भास, भवभूति, माघ, बाणभट्ट जैसे कवियों ने विश्व साहित्य

> को अनमोल रचनाएँ दीं। कालिदास का प्रसिद्ध श्लोक —

"काव्यं यशसं अर्थाकृतं व्यवहारविदे शिवेतरक्षतये।

सद्यः परनिर्वृतये कान्तासंमिततया उपदेशयुजे।।"

कहता है कि काव्य का उद्देश्य यश प्राप्ति, अर्थोपार्जन, व्यवहार कुशलता, अपाय से रक्षा, तुरन्त आनंद और उपदेश देना – ये सभी हैं। ऐसी व्यापक दृष्टि

केवल संस्कृत साहित्य में ही मिलती है।

आज जब भारत पुनः सांस्कृतिक जागरण की ओर अग्रसर है, तब संस्कृत को केवल मंदिरों या कर्मकांडों तक सीमित करना उसके साथ अन्याय होगा। यह

भाषा हमारी सांस्कृतिक रीढ़ है और इसे जीवन के हर क्षेत्र में पुनर्स्थापित करना होगा — शिक्षा, प्रशासन, चिकित्सा, विज्ञान, मीडिया और तकनीकी जगत में।

यूनेस्को ने संस्कृत को "World's oldest unbroken cultural tradition" बताया है। जब दुनिया इसे अपना रही है, तो हमें गर्व के

साथ इसे अपनाना चाहिए। संस्कृत बोलना, पढ़ना, और लिखना केवल गौरव की बात नहीं, बल्कि हमारी सांस्कृतिक जिम्मेदारी भी है।

"संस्कृतं जीवयेम।"

अर्थात् आइए, हम सभी मिलकर इस दिव्य वाणी को पुनः जीवंत करें। यह भाषा हमें केवल हमारे अतीत से नहीं जोड़ती, बल्कि

हमारे भविष्य को भी आलोकित करती है।

गोलू चौराहा, एल्डिको, उद्यान–2, रायबरेली रोड, लखनऊ 226025

इमेल : shubhambajpai1991@gmail.com

www.kahaar.in

हरियाणवी गीत

मौसम

रणवीर दहिया

नान्हीं नान्हीं बूंद पड़ें थी घटा जोर की छाई थी।। गड़ गड़ बादल गरजैं थे मोर नै कूक सुनाई थी।।

1

थोड़ी थोड़ी बाल चालै थी सर्दी उतार पै आई एंटीना पर तैं बूंद टपकै टी वी मैं गड़बड़ पाई भूरी कुतिया भी देखै ठिकाना चौगरदें लखाई पाणी फर्श पै बिखर गया दी उल्टी तस्वीर दिखाई एक खाट भीजै बाहर पड़ी बाण नै मरोड़ी खाई थी।।

2

बिना स्वैटर सर्दी लागै स्वैटर मैं लागै गरमाई बिजली चमकै एक आध बै मौसम मैं मस्ती छाई चिड़िया चहकेंं चीं चीं करकै बुगले नै उडार लगाई दोफारे मैं सांझ हुई थी सूरज नै नजर चुराई इतनी वार मैं पड़ौसी नै दो किलो जलेबी मंगाई थी।।

3

कई लोगां नै कारां के ला चाबी स्पीड बढ़ाई इंद्रा झील पै पहोंच गए डिप्लोमैट की चुस्की लाई कितै उतारे गुलगुले लपट पके तेल की ठाई कई लोफर हांड़े गली मैं ताना कसी करी सवाई तगार मैं खड़े खड़े की मेरी पिंडी खूब करनाई थी।।

4

आसमान में देख्या मने फेर बीड़ी एक सुलगाई क्यों बे काम नहीं करता मालिक ने डांट पिलाई इस मौसम मैं काम करूं मजबूरी मैं उमंग छिपाई याद तीनों चारों बालकां की बहोत घणी मन मैं आई मौसम तैं रणबीर घणी जरूरी उनके पेट की खाई थी।।

बाबा साहेब अंबेडकर रणवीर दहिया

शिक्षित होकै संगठन बनाकै संघर्ष का नारा लाया रै।। विचार मानवता वाद का पूरी दुनिया मैं पंहुचाया रै।।

1

दलित शोषित महिलाओं को समाज मैं सम्मान मिलज्या म्हारी दरद भरी जिंदगी मैं खुशी का कोय फूल खिलज्या सामाजिक समानता बारे संघर्ष का बिगुल बजाया रै।। विचार मानवता वाद का पूरी दुनिया मैं पंहुचाया रै।।

2

चौदह अप्रैल ठारा सौ कियानवै इस दुनिया मैं आये परिवार मैं बाबा साहेब ये चौदहवीं सन्तान बताये दलितोत्थान के विचार तैं युग बदलो का नारा ठाया रै।। विचार मानवता वाद का पूरी दुनिया मैं पंहुचाया रै।।

3

नागपुर सम्मेलन के मां उणनै एक बात समझाई थी देश की उन्नित का पैमाना महिलाओं की हालत बताई थी सभी तबकों का कल्याण होवै इसा संविधान बनाया रै।। विचार मानवता वाद का पूरी दुनिया मैं पंहुचाया रै।।

4

पच्चीस दिसंबर का दिन था मनु स्मृति जलाई कहते समतामूलक समाज की बाबा जी अलख जगाई कहते रणबीर उनके विचारों पै कर कोशिश छंद बनाया रै।। विचार मानवता वाद का पूरी दुनिया मैं पंहुचाया रै।।

(युग पुरुष डॉ भीमराव अंबेडकर के परिनिर्वाण दिवस के अवसर पर उनकी याद के रूप में एक रागनी'''')

पी—27, इन्द्रप्रस्थ कालोनी, सोनीपत रोड, रोहतक—124001

ईमेल : dahiyars@rediffmail.com

भाषा विज्ञान

संस्कृत एक प्राचीन सेतु है

सुधाकर त्रिपाठी

भाषा सम्प्रेषण अथवा विचार विनिमय का माध्यम मात्र नहीं है, यह अनुभव, रमृति और ज्ञान का भी कोष है. भारत में भाषा को लेकर बडा विवाद है. 'राष्ट्रीय भाषा' को तय करने को लेकर भी एक भय है कि यह क्षेत्रीय भाषाओं के अस्तित्व को मिटा सकती है. यह भय स्वाभाविक है हिंदी या अग्रेजी में से कौन को लेकर देश की जनता भी द्वन्द में है. भारत निश्चय ही तमिल, तेलुगू, मराठी, भोजपुरी, मैथिली, बंगाली, कश्मीरी, मलयाली, कन्नड़ आदि सभी भाषाओं के अनुभवों और स्मृतियों का नाम है. इसमें से किसी एक भी भाषा का क्षय भारत के एक अहम अंग का क्षय है. अगर हिंदी और अंग्रेजी को देखें तो भारत की अनगिनत क्षेत्रीय भाषाएं हिंदी और अंग्रेजी से अधिक मौलिक और पुरानी भी हैं. हिंदी और अंग्रेजी दोनों ही भाषाई-जीवन के यौवनकाल में हैं. ऐसे में भारत को जोडने वाली भाषा के रूप में किस एक भाषा का चयन किया जाए यह विवादों का बड़ा विषय बन चुका है.

कौन सी भाषा बन सकती है भारतीय भाषाओं में सेतु

एक क्षेत्रीय भाषा अन्य क्षेत्र के लोगों के अनुभवों और स्मृतियों से पूरी तरह मेल नहीं बिठा सकती— यह स्वाभाविक है. ऐसी स्थिति में अगर कोई एक भाषा भारतीय तरीके से भारतीय अनुभवों, स्मृतियों और ज्ञान को एक मंच पर ला सकती है तो वह निश्चय ही संस्कृत है. संस्कृत मात्र भाषा ही नहीं, यह भारतीय विविधता के मध्य एक समाधान का भी नाम है, किन्तु इस पर कभी—कभार ही राजसत्ता या समाजसत्ता का ध्यान जा पाता है. सबसे दुखद तो यह है कि इसे भारत की सामाजिक समस्याओं की एक जननी की तरह भी कतिपय लोगों और

समुदायों द्वारा प्रचारित किया गया. एक बड़े वैचारिक समूहों ने इसे कूपमंडूकता और एक प्रतिगामी भाषा के रूप में भी सिद्ध करने का निरंतर प्रयास किया, यद्धिप संस्कृत के अवदानों के प्रति संसार के बड़े—बड़े लेखकों, दार्शनिकों और विचारकों ने अपनी कृतज्ञता प्रकट की है. सभी भाषाएं अपने बोलने वाले मानव समूह के सपने, संघर्षों, सफलताओं और विफलताओं का भी अभिलेख होती है.

भाषा विवाद में एक बड़ी कठिनाई इसे समझे-बोले जाने को लेकर है. मराठी का कहना है कि हम हिंदी नहीं समझ सकते, बंगाली का कहना है हम भोजपुरी नहीं बोल सकते, तामिल का आग्रह है हम पंजाबी नहीं बोल सकते और इन सभी के कहने में बड़ी सच्चाई है. इस कठिनाई के सन्दर्भ में देखें तो संस्कृत किसी न किसी मात्रा में एक दूसरे को जोड़ने में सक्षम है. इस अर्थ में देखें तो यह भारत के सभी क्षेत्रों में आंशिक तौर पर ही सही लेकिन समझी जाती है या थोड़े प्रयासों से समझी जा सकती है. दक्षिण भारत की एक स्मृति है— जब हम वहां एक भारतीय पारंपरिक नृत्य देख रहे थे, तो हमारे साथ बैठा एक 'आंबेडकरवादी' मित्र जो तेलुगु था उसने उस नृत्य में बजने वाले गीत का अर्थ बताया तो हम चौंक गए. उसने बताया कि इसमें नदियों की स्तुति की जा रही है. हमने उससे पूछा कि तुम्हें कैसे पता चला? उसने बताया कि वह गायन संस्कृत में था और ये सारे शब्द तेलुगु में भी हैं इसलिए वह समझ सका.

इसी तरह का एक दूसरा अनुभव था. हमने एक अन्य मित्र को रामानंद सागर की रामायण को देखते देखा. हमने उससे कहा कि तुम हिंदी सिनेमा तो नहीं देखते, क्योंकि तुम्हें हिंदी नहीं आती तो फिर रामानन्द सागर की रामायण कैंसे समझ लेते हो? उसने फिर से उपरोक्त मित्र की तरह ही उत्तर दिया कि हिंदी सिनेमा के शब्द मेरे समझ में नहीं आते. इसका अर्थ स्पष्ट था कि संस्कृत शब्दों के प्रयोग से उत्तर और दक्षिण के खाई को पाटा जा सकता है.

निश्चय ही संस्कृत दक्षिण और उत्तर के भाषाई खाई के बीच एक पूल की तरह कार्य कर सकती है. सबसे पुराने लिखित साहित्य के साथ यह भारत को जितने मजबूती से संयुक्त कर सकती है. वह सामर्थ्य अन्य भाषाओं जैसे हिंदी और अंग्रेजी में तो नहीं ही है. अंग्रेजी तो सौ फीसदी भारतीय अनुभवों और स्मृतियों से बेमेल है, दुर्भाग्य से हिंदी भी इससे पूर्णतः मुक्त नहीं है. इसमें वैसे शब्दों ने अपनी पैठ बना ली है, जो भारतीय थे ही नहीं, उससे भी दुखद तो यह है कि इन शब्दों के सहज विकल्प हिंदी में थे, किन्तु उसे असहज और कठिन कहकर त्याग दिया गया. उदाहरण के लिए, दिल, जिन्दगी, ईमानदारी, शहीद, जैसे सैकड़ों शब्दों ने भारतीय चेतना में अपना स्थान (विशेषकर उत्तर भारत में) हृदय, जीवन, कर्तव्यनिष्ठा, वीरगति आदि भारतीय शब्दों को अव्यवहारिक और हास्यपूर्ण घोषित करके बनाया है.

हम भारत की कुछ भाषाओं में शब्दों के अनुपात पर विचार करें तो पाते हैं कि मलयालम और बंगाली में संस्कृत के लगभग नब्बे प्रतिशत तक शब्द प्रयुक्त होते हैं. तमिल अपने सबसे शुद्ध रूप में भी 42 प्रतिशत तक संस्कृत के शब्दों के बिना नहीं बोली जा सकती. इसी तरह से तेलुगु, कन्नड़ जैसी दक्षिण भारतीय भाषाएं भी बड़ी संख्या में संस्कृत शब्दों से सुसज्जित हैं; जैसे तेलुगु में पहाड़ के स्थान पर गिरी शब्द बोला जाता है. अगर भारत की अन्य भाषाओं को भी देखें तो कश्मीरी, उर्दू, हिंदी, मराठी, गुजराती, पंजाबी आदि सभी भारतीय भाषाएं संस्कृत के शब्दों को साझा करती हैं.

भाषा का बनना और बिगडना

इसके उपरांत भी एक बड़े बौद्धिक वर्ग का कहना है कि इसे भारत को जोड़ने वाली भाषा या राष्ट्रीय भाषा नहीं बनाई जा सकती, क्योंकि इसकी समझ रखने वाले लोग भारत में बहुत कम हैं. यह तर्क निराधार हैं, क्योंकि यह बात अंग्रेजी पर अधिक लागू होती है, इसके बाद भी इसकी अनिवार्यता को अस्वीकृत नहीं किया जाता. किसी भी भाषा का अस्तित्व उसके अन्तर्निहित गुण—दोषों से तय नहीं होता, यह सत्ता की नीतियों से मिट सकती है या फिर सैकड़ों वर्ष बाद भी पुनर्जीवित हो सकती है. सात दशक बाद भी भारत आंशिक रूप से ही अंग्रेजी सीख पाया है, लेकिन सात दशक में पूरे भारत में संस्कृत को सहजता से व्यवहार में लाया जा सकता है.

अंतिम रूप से जो मेरा आग्रह है कि मातृभाषा के बिना चिंतन विकसित नहीं हो सकता, इसलिए क्षेत्रीय भाषाओं भोजपुरी अवधी ब्रजभाषा बघेली मैथिली गढ़वाली कुमायूंनी बघेली नेपाली बिजिका बुन्देली नेपाली आदि को विशेष रूप से प्रोत्साहित किया जाए, साथ ही अंग्रं जी संसार को जानने—समझने की एक भाषा है तो उसे भी अस्वीकृत नहीं किया जा सकता है, लेकिन त्रिस्तरीय भाषा प्रारूप के बीच यदि संस्कृत को राष्ट्रीय भाषा का स्थान प्रदान किया जाता है तो उससे आपत्ति न तो उत्तर भारत के किसी राज्य को हो सकती है और न दक्षिण भारत के राज्यों को. संस्कृत एक प्राचीन परन्त मजबत सेत् है.

सौजन्य से

Dr. Manoj Garg

Director +91-9897674227

ETRC CONSULTANTS PVT. LTD. ENVIRONMENTAL AND TECHNICAL RESEARCH CENTRE

ISO 9001:2015, ISO 45001:2018, ISO 14001:2015 Laboratory Approved by MoEFCC, NABL & UPPCB Accrediated by QCI/NABET

Regd. office & Laboratory 2/261, Vishwas Khand, Gomti Nagar, Lucknow - 226 O10 (U.P.) Email : ETRCLTH@YAHOO.IN, Web : www.etrcindia.com

OUR SERVICES

- Environmental Clearance (EC)
- EIA/EMP Report
- Environmental Monitoring & Auditing
- Consent to Operate/Establish
- Compliance (Monitoring & Report)
- ETP/STP/WTP (Installation, O & M)
- Rain Water Harvesting
- Waste Management
- Water Management
- Ground Water NOC From UPGWD/CGWA
- Water Audit
- Water Impact Assessment Report
- CER Management

DEAL-IN INDUSTRY SECTORS

- Sugar
- Distilleries
- Thermal Power Plant
- Steel
- Paper
- Cement
- Mining
- Building & Large Construction Project
- Township & Area Development
- Chemical Plant
- Infrastructure Projects
- Tannery
- and others Projects

River and Environment

Peer Reviewed

Integrating Adi Gyan and Modern Technology for the Restoration of the Sarni River in the Chambal Range

Manjal Sarandevot¹, Pooja Joshi¹ and Rajender Singh²

Abstract

The restoration of rivers in ecologically fragile zones such as the Chambal range requires a nuanced and inclusive approach. This essay explores the restoration of the Sarni River using a unique model that integrates Adi Gyan (indigenous wisdom) with modern technological innovations. This synergy has not only revived the Sarni River but also empowered local communities, promoted sustainable water management, and enhanced biodiversity.

Key Words: Adi Gyan, Sarni River Restoration, Modern Technology.

1. Introduction

The Sarni River, a tributary within the Chambal basin, has suffered severe ecological degradation due to deforestation, unregulated water usage, and soil erosion. In response, recent restoration initiatives have turned towards combining traditional ecological knowledge with cutting-edge science, following the principles of "wisdom meets innovation." This paper investigates the hybrid model that led to Sarni's revival and demonstrates the potential for replicating such models across semi-arid river systems in India.

Adi Gyan: The Traditional **Ecological Knowledge**

Adi Gyan, or ancient knowledge,

refers to the time-tested practices developed by indigenous and rural communities over centuries. In the Chambal range, communities like the Sahariya tribes have historically coexisted with the landscape using watersmart practices. Use of 'johads', 'haveli systems, and 'chaukas' (square embankments) for monsoon water retention and small earthen bunds to slow runoff and improve soil moisture as Traditional Water Harvesting Systems. Local communities favored planting indigenous trees like babul, ber, amaltas, and arjun, which naturally resist erosion and improve aquifer recharge and usage of vetiver grass for bund stabilization, an age-old method for controlling soil erosion as Plant-Based Solutions. Also traditional water councils (pani panchayats) managed water allocation, maintaining equity and accountability as Community-Led Governance.

Modern Technology in **River Restoration**

Modern science played a crucial role in scaling up and validating traditional knowledge through Geospatial Mapping and Remote Sensing. Satellite imagery from ISRO's BHUVAN platform helped identify degraded zones and track surface runoff paths.

And GIS tools were used to map recharge potential zones and overlay socio-economic data for targeted interventions. Also Hydro-geological Surveys like Groundwater flow models (MODFLOW) were deployed to identify aquifers for recharge including Digital piezometers were installed to monitor groundwater levels in real-time. Also by using Artificial Recharge and Infiltration Tanks, Gabion structures, percolation tanks, and check dams were engineered using scientific calculations to maximize retention and desilting of traditional ponds was guided by laser leveling and watershed modeling. Through Mobile Applications and IoT villagers were trained to use mobile apps for reporting river health and rainfall and IoT sensors monitored water quality, measuring parameters like turbidity, pH, and dissolved oxygen.

2. Literature Review

In the context of central India, especially the Chambal and Bundelkhand regions, several studies have documented water conservation practices such as chaukas, johads, and anicuts, maintained by local communities without external technological support (Agarwal & Narain, 1997). These systems relied on an intimate understanding of local

¹Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur, Rajasthan

²Tarun Bharat Sangh, Alwar, Rajasthan

Corresponding author jalpurushtbs@gmail.com

hydrology, rainfall variability, and soil absorption rates.

Scholars such as Gadgil and Berkes (1991) emphasize that traditional ecological knowledge (TEK) is dynamic and adaptive, capable of offering sustainable solutions to modern environmental challenges.

In the case of the Sarni River, community elders identified ancient water flow paths that had disappeared due to siltation and encroachments. Based on their knowledge, restoration teams realigned river channels and built check dams at historically known recharge points. This ensured that water percolated into the ground instead of flowing away rapidly, thereby increasing the groundwater table and supporting perennial flow in some stretches (Sharma, 2013).

One of the most impactful technologies used in the restoration of the Sarni River is Remote Sensing (RS) and Geographic Information Systems (GIS). These tools have enabled planners to analyze land use changes, erosion patterns, and stream density variations over time. Using highresolution Sentinel-2 satellite imagery, hydrologists were able to identify critical catchment degradation zones and plan targeted interventions such as check dam placement and afforestation drives (Mohan et al., 2019).

Hydrological modeling software like SWAT (Soil and Water Assessment Tool) and MIKE HYDRO has been used to simulate water flow, predict runoff, and optimize water conservation structures. These models provided real-time insights into surface and subsurface water movement, allow-

ing effective construction of percolation tanks, recharge shafts, and contour trenches (Rao & Reddy, 2021).

Additionally, drone technology and LiDAR surveys played a vital role in mapping microwatersheds with exceptional precision. Drones captured topographic data and visual changes in vegetation cover preand post-restoration. IoT-enabled flow meters and groundwater sensors helped monitor the success of interventions by providing continuous data on river discharge and aquifer levels (CGWB, 2023).

Kumar and Mishra (2020) argue that integrating *Adi Gyan* into scientific river restoration enhances both effectiveness and community ownership.

Narain (2021) notes that technological solutions often fail when imposed without cultural context. However, when combined with *Adi Gyan*, technologies become community-friendly, scalable, and socially sustainable.

In the Chambal range, preliminary documentation by MP Council of Science and Technology (MPCST, 2022) has shown that communities using a combined model saw faster river flow stabilization and more equitable water distribution.

2.1 Research Gap

While both *Adi Gyan* and modern technological applications are widely studied in isolation, integrated approaches are still underrepresented in scholarly research. Few long-term impact assessments exist, especially in the Chambal zone. There is also a lack of documentation on knowledge transmission between

elders and technical agencies, and minimal exploration into gendered dimensions of river restoration knowledge.

3. Objectives of the study

The literature highlights that both *Adi Gyan* and modern technology have their unique strengths. While *Adi Gyan* ensures ecological harmony and community acceptance, technology brings precision, scalability, and monitoring capability. The Sarni River project in the Chambal region presents a unique opportunity to develop a trans-disciplinary model that can be replicated across India's river restoration efforts.

- To document indigenous knowledge systems related to water and soil conservation in the Chambal region.
- To evaluate modern technological methods applied in Sarni River restoration.
- To analyze the integration of both systems in achieving ecological and social sustainability.

4. Methodology Study Area:

Sarni River basin in Sheopur and Morena districts of Madhya Pradesh, within the Chambal catchment.

Area impacted: ~3,000 hectares.

Methods Used:

- **Field Surveys**: Participatory Rural Appraisals (PRA) with local elders and tribal communities to document *Adi Gyan*.
- **Technical Assessments**: GIS mapping of pre- and post-restoration river paths using Sentinel-2 data.
- Intervention Monitoring:

Data collected through IoTbased flow sensors and groundwater monitoring devices.

Data Collection

- Satellite Data: Sentinel-2 and Landsat 8 (NDVI, NDWI, DEM)
- Hydrological Models: SWAT (Soil and Water Assessment Tool)
- **Sensors:** IoT-based flow meters and water level loggers installed across 12 monitoring points
- **Field Surveys:** Conducted in Sheopur and Morena districts (Feb-Nov 2024)
- Data Source: Secondary data

Tools Used

- QGIS and ArcGIS Pro: Spatial mapping and change detection
- Drone Surveys: 5 cm resolution topographic mapping of watershed zones
- **Soil Moisture Sensors**: For real-time observation of percolation and recharge

Technological Interventions Applied

Remote Sensing and GIS

- Used for delineation of catchment area (~3,200 hectares)
- Mapping pre- and postrestoration flow patterns
- Monitoring vegetation cover and land use changes using NDVI and NDWI indices

Hydrological Modeling (SWAT Model)

Simulated runoff, infiltration, and sediment transport

- Optimized placement of 46 check dams and 32 recharge shafts
- Predicted soil erosion reduction by 58% over 3 years

Drone-based Mapping

- High-resolution aerial imagery helped in:
 - Micro-watershed planning
 - Slope analysis and bund construction alignment
 - Identification of old river channels and abandoned recharge zones

IoT and Smart Monitoring

- Deployed solar-powered IoT sensors for:
 - ☐ Real-time flow velocity
 - Groundwater table monitoring
 - Data logging every 6 hours via GSM cloud servers

5. Restoration Model: Merging Ancient Wisdom with Modern Tools

5.1 Traditional Techniques Employed

- Restoration teams incorporated stone bunding, vegetative barriers, and traditional contour trenches, guided by tribal community input.
- Use of native tree species like *Babul*, *Ber*, and *Arjun* in riparian plantations.

5.2 Technological Interventions

- GIS Mapping used to identify erosion hotspots and recharge zones.
- Remote Sensing monitored vegetation regrowth and

- water spread area changes (NDVI and NDWI analysis).
- Drones mapped microwatershed features and soil profiles with 5 cm resolution.
- SWAT Hydrological Model predicted surface runoff and optimized placement of check dams.

6. Analytical Presentation

Indicator	Pre- Restoration	Post Restoration (2024)
Average Groundwater Depth	28 ft	15 ft
Surface Flow (Monsoon)	Inter mittent	Semi- perennial
Vegetative Cover (NDVI	0.18	0.52
Agricultural Productivity	~1.1 tonnes/ha	~2.0 tonnes/ha
Biodiversity Return	Limited	Increased sightings o fish, birds reptiles
Bird Sightings	<30 species	>90 species including kingfishers, strorks
Soil Moistur Index	Low	Moderate to high in restored zone
Community Participation	Limited	500+ households involved

7. Discussion

The integration of Adi Gyan provided context-specific insights unavailable through technology alone—such as identifying ancient water paths, understanding soil types by local names, and predicting rain cycles from tree behavior. Technology, meanwhile, quantified and visualized these insights, making them scalable and more precise.

This hybrid model of restoration not only improved ecological indicators but also empowered local communities, aligning with the SDG goals of sustainable water management,

community participation, and climate action.

8. Outcomes of the Hybrid Restoration Model

a. Hydrological Improvements

- River flow restored to seasonal consistency, with visible surface water even in peak summer months. Base flow increased from seasonal (3-4 months) to semiperennial (8 months) in restored stretches.
- Groundwater levels rose by more than 10 fts across catchment villages.

b. Agricultural Benefits

- NDVI improved from an average of **0.18 to 0.52**
- Increase in cultivable area by 28%.
- Shift from rain-fed farming to partial irrigation, enabling cultivation of high-value crops like mustard and vegetables.

c. Cultural and Social Revival

- Restoration of sacred groves and traditional water bodies (like 'Dev Talabs') revived local spiritual and social practices.
- Women's SHGs managing nurseries and maintenance activities brought social capital and economic independence.

d. Biodiversity Gains

- Return of wetland birds such as painted storks and black ibises.
- Revival of native aquatic flora and species like:
 - □ *Tor tor* (Mahseer fish)
 - □ *Nilssonia gangetica* (Softshell turtle)
- Revival of local fish species

and frogs, indicating improved ecological balance.

e. Socio-Economic Impact

- Increased water availability in 29 villages (~18,000 people)
- 37% increase in cropping intensity and agricultural yield (Source: MP Agriculture Dept., 2024)
- Employment generation of 41,000+ workdays under MGNREGA through techbased restoration activities

9. Challenges Faced

- Lack of digital literacy initially delayed adoption of sensor-based monitoring in local committees.
- Climate variability led to calibration challenges in hydrological models.
- Maintenance of IoT sensors in remote areas required mobile solar power units and local technician training.

10. Lessons and Way Forward

a. Community Participation is Kev

 The success was rooted in respecting and leveraging the wisdom of local communities. Restoration was seen as a social movement, not just a technical intervention.

b. Blended Models Are Replicable

- The Sarni model shows that blending Adi Gyan and modern tech can be a template for other rivers in the Chambal and beyond.
- c. Need for Institutional Support
- Sustainable outcomes

depend on long-term support for community-led monitoring, funding for maintenance, and integration into District Environmental Action Plans.

11. Conclusion

The restoration of the Sarni River is a compelling story of harmony between traditional wisdom and modern science. When local communities are empowered to apply their ancestral knowledge, and when it is enriched with the tools of modernity, nature responds with resilience. The Sarni River now flows not just as a stream of water but as a symbol of sustainable coexistence.

12. Recommendations

- Develop Village River Tech Cells for community-led GIS mapping and sensor maintenance.
- Integrate AI and machine learning models for predictive flood/drought alerts.
- Create open-access platforms to host restoration data, progress dashboards, and case studies.

13. References

Agarwal, A., & Narain, S. (1997).

Dying Wisdom: Rise, Fall and
Potential of India's Traditional
Water Harvesting Systems.

Centre for Science and Environment.

Central Ground Water Board (CGWB). (2023). Groundwater Year Book - Madhya Pradesh Region.

CGWB (2024). *Groundwater Status Report: Chambal Basin.* Central Ground Water Board, Bhopal Region.

Gadgil, M., & Berkes, F. (1991). Traditional resource management

- systems. Resource Management and Optimization, 8(3-4), 127–141.
- ICAR-IISWC (2022). Integration of Traditional Practices in Watershed Development.
- ISRO Bhuvan Portal (2022).

 Geospatial Data for Chambal

 Basin.
- Kumar, S., & Mishra, A. (2020).

 Blending Traditional Knowledge
 with Modern Science for Watershed Restoration: A Case Study
 from Central India. Ecology,
 Economy and Society-The
 INSEE Journal, 3(2), 133-144.
- Madhya Pradesh Forest Department (2022). *Chambal Eco-Restoration Action Plan*.
- Ministry of Jal Shakti, GoI (2023). *Techno-Socio Framework for River*

Rejuvenation.

- Mishra, A., & Singh, A. (2022). Drone and Sensor-based River Restoration. Proceedings of India Water Week 2022, Ministry of Jal Shakti.
- Mohan, D., Kumar, P., & Singh, R. (2019). Application of Remote Sensing and GIS in Watershed Management of Chambal Basin. Indian Journal of Soil and Water Conservation, 48(2), 142–150.
- MPCST (2022). Field Report on Integrative River Restoration in Chambal Region. Bhopal: MP Council of Science and Technology.
- Narain, S. (2021). *Traditional Wisdom* in the Age of Climate Change: What Can India Learn? Down To

Earth Annual Lecture Series.

- Rao, M. & Reddy, K.S. (2021). Use of Remote Sensing for Monitoring River Restoration Projects in Semi-Arid Regions of India. Journal of Environmental Management, 287, 112343.
- Sentinel-2 Data Repository (2024). *Change Detection Analysis for Sarni River Catchment.*
- Sharma, D. (2013). Community-led Water Management in Central India. Journal of Rural Studies, 29(1),1–8.
- SWAT User Manual (2023). Soil and Water Assessment Tool (SWAT). USDA and Texas A&M University.
- TERI (2022). Use of Indigenous Knowledge in River Restoration: Case Studies from India.

बेटी

एडवोकेट विशाल यादव

घर में जब बेटी पैदा होती है तो हर जगह लक्ष्मी हुई है लक्ष्मी का शोर सुनाई पड़ता है

कितना कर्णप्रिय लगता है आह लेकिन जब वही बेटी बड़ी होकर अपने बल बूते जब इस पितृसत्तात्मक समाज मे कदम से कदम मिलाकर आगे बढ़ना चाहती है

तो वही लोग जो जन्म के समय लक्ष्मी आयी है का शोर मचा रहे होते है वही उपदेश देते है कि बेटी बहुएं घर मे रहने के लिए बनी होती है। क्यों भाई जब लक्ष्मी पर तुम इतनी बंदिशें लगा रहे हो तो कैसे तुमने ये सोच लिया कि तुम्हारे घर लक्ष्मी रहेगी?

तुम चंद लोग बैठना और सोचना जितना तुमनें अपने बेटे को अवसर दिया क्या तुमनें उस बेटी जिसके जन्म के समय तुमने उसे लक्ष्मी कहकर पुकारा था उसे पढ़ने का, आगे बढ़ने का कितना अवसर उपलब्ध करवाया।

> अगर करवाया तो तुमसा महान पिता, भाई कोई नहीं और अगर नहीं तो मैं चाहूंगा कि तुम्हारे घर लक्ष्मी पैदा ही न हो..!

कैथीशंकरपुर, लालगंज, आजमगढ़-276202 <u>yvishal532@gmail.com</u>

River Rejuvenation

Peer Reviewed

Rejuvenation of Parbati Sarni River for Biodiversity Enhancement and River Revival in Chambal Range

Manjal Sarandevot¹, Pooja Joshi¹ and Rajender Singh²

Abstract

The Parbati Sarni River, a significant tributary within the Chambal River system, has witnessed environmental degradation due to anthropogenic pressures, unsustainable land use, and climate change. Once a thriving ecological corridor, the river has seen declining biodiversity, loss of native species, siltation, and pollution. This paper aims to rejuvenate the river ecosystem, enhance biodiversity, and ensure sustainable management of the Parbati Sarni River in the Chambal Range.

Key Words: Parbati Sarni River, Restoration, Biodiversity.

1. Introduction

Rivers are essential to ecosystems, supporting biodiversity and providing for livelihoods. The Parbati Sarni River, an important tributary in the Chambal region of Madhya Pradesh and Rajasthan, has experienced degradation from human activities, climate changes, and poor natural resource management. The Parbati River, originates in the Sehore district of Madhya Pradesh and flows through the Baran district of Rajasthan. Known for its intermittent flow and ecological importance, the Parbati Sarni River plays a vital role in maintaining regional biodiversity and supporting local communities. Over the years, the river has suffered due to deforestation, soil erosion, unsustainable agricultural practices, and unregulated sand mining. This paper explores the rejuvenation efforts aimed at restoring its ecological health and enhancing biodiversity.

Once a lively ecosystem that sustained various flora and fauna, the river now encounters diminished flow, silt buildup, pollution, and degradation of ecological health. Revitalizing the Parbati Sarni River goes beyond simply managing water; it is a comprehensive ecological imperative crucial for boosting biodiversity and restoring the broader Chambal ecosystem.

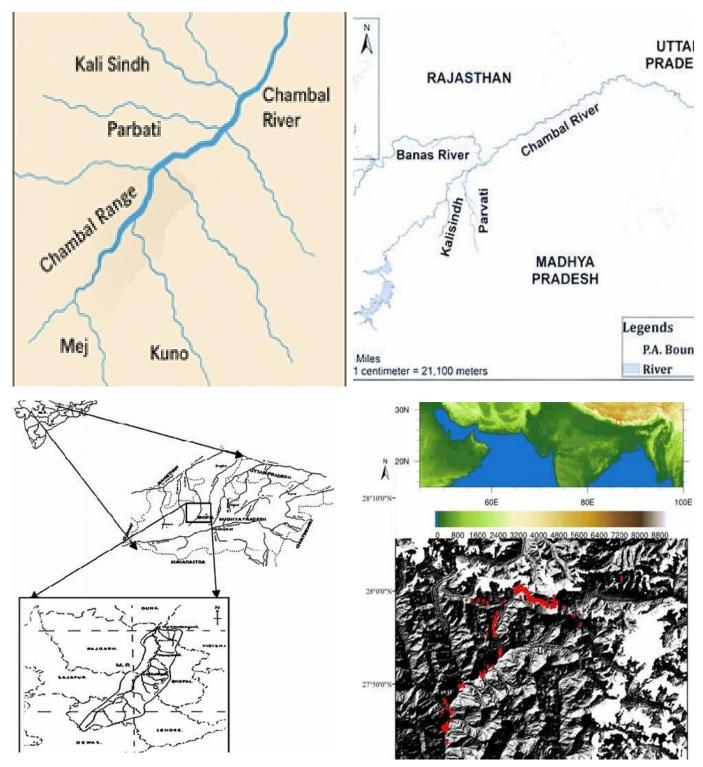
This map provides a detailed view of the Parbati River's course through Madhya Pradesh and Rajasthan, highlighting its origin, flow direction, and confluence with the Chambal River. Diagram illustrates the infrastructure components of the irrigation project, including dams, canals, and distribution networks, which play a crucial role in river rejuvenation and water management.

1.1 Ecological Significance of the Parbati Sarni River

The Parbati Sarni River, which flows into the Chambal basin, is significant as a hotspot for biodiversity. Its riparian areas provide habitat for numerous bird species, amphibians, reptiles, and freshwater fish, many of which are either endemic or at risk. The condition of this river directly affects the health of the Chambal River, one of India's cleanest perennial rivers, which hosts rare species such as the Gharial, Gangetic dolphin, and Indian skimmer.

Due to the ecological interconnectivity of the Chambal basin, degradation in tributaries such as Parbati Sarni leads to downstream issues—changed flow patterns, decreased habitat quality, and lower species populations.

1.2 Factors Leading to Degradation


Several factors have contributed to the decline of the Parbati Sarni River:

- 1. Deforestation and Soil Erosion: Large-scale deforestation in catchment areas has led to increased runoff, siltation, and decreased groundwater recharge.
- 2. Agricultural Expansion and Pollution: Excessive use of chemical fertilizers and pesticides from nearby agricultural lands has polluted the water and disrupted aquatic life.

¹Janardan Rai Nagar Rajasthan Vidyapeeth, Udaipur, Rajasthan

²Tarun Bharat Sangh, Alwar, Rajasthan

Corresponding author jalpurushtbs@gmail.com

Picture and map of Rejuvenation of the Parbati Sarni River for Biodiversity Enhancement and River Revival

- 3. Water Extraction and Dams: Unregulated water extraction for irrigation and checkdams have reduced river flow, especially in dry seasons.
- 4. Encroachments and Urban Waste: Urban expansion has encroached upon

floodplains and led to the dumping of untreated sewage and solid waste.

1.3 Strategy for Rejuvenation

The rejuvenation of the Parbati Sarni River must follow a multi-pronged, community-centered, and ecosystem-based approach:

- 1. Catchment Area Treatment:
 Reforestation with native species and soil conservation measures like contour trenches, gully plugs, and check dams can reduce siltation and improve groundwater recharge.
- 2. Ecological Flow Restora-

tion: Ensuring minimum flow through regulated water extraction and interlinking of check-dams can revitalize aquatic habitats.

- 3. Pollution Control: Introduction of decentralized wastewater treatment systems and promotion of organic farming along riverbanks to minimize pollution.
- 4. Biodiversity Corridors:
 Development of green corridors and protected areas along the river to facilitate wildlife movement and habitat restoration.
- 5. Community Participation: Engaging local communities through river festivals, ecoclubs, and awareness programs to promote river stewardship.
- 6. Monitoring and Research: Establishing a river health index with periodic monitoring of water quality, aquatic species, and riparian vegetation.

Rejuvenating the Parbati Sarni River is not just an ecological imperative but also a social and economic one. As a lifeline for the Chambal region, its revival can serve as a model for river restoration across India. With coordinated efforts between government agencies, environmental experts, and local communities, the river can regain its lost vitality, securing both biodiversity and human well-being for generations to come.

2. Literature Review

The Chambal River, recognized for its fairly untouched state, is among the rare perennial rivers in India that continues to sustain a rich biodiversity. Research conducted by Rao et al. (2011) has highlighted the ecological vulnerability of the Chambal basin, which is home to endangered species such as the gharial (Gavialis gangeticus), the Gangetic dolphin, and various migratory birds. Streams such as Parbati and Sarni are essential for sustaining the hydrological and ecological equilibrium of the greater Chambal system.

Uncontrolled sand extraction, deforestation, agricultural runoff, and alterations to hydrology have greatly affected small river systems in the Chambal area. As noted by **Singh et al.** (2017), diminished base flow and contamination are major pressures on the aquatic biodiversity of the Parbati and Sarni rivers.

River rejuvenation entails a comprehensive strategy that combines hydrological restoration, community involvement, and the conservation of biodiversity. Bassi et al. (2014) examined effective methods for river rejuvenation, highlighting the importance of watershed management, reforestation, and ecological restoration of catchment regions. These methods can be utilized in the Parbati and Sarni regions to boost base flow and support aquatic ecosystems.

Local communities play a crucial role in effectively reviving rivers. Mehta and Shah (2020) emphasize that conventional water management practices and community-led watershed initiatives in central India resulted in significant enhancements in water quality and biodiversity metrics.

Riparian buffer zones and created wetlands have been shown to boost biodiversity by offering habitats and enhancing water quality. **Chakraborty et al. (2019)** showed that rehabilitating riparian plants in eroded riverbanks enhanced diversity among fish and macro-invertebrates.

Recent programs such as the National Mission for Clean Ganga and River Rejuvenation initiatives as part of Jal Shakti Abhiyan offer a model that can be modified for smaller rivers like Parbati and Sarni. MoEFCC (2021) describes policy approaches that promote decentralized governance, management of catchment areas, and collaborations between the public and private sectors.

To clarify the strategy for revitalizing Mathura's declining Yamuna river, Devendra S. Bhargava (2006) concluded that, besides mismanaged solid waste collection and disposal, river pollution results from industrial, agricultural, and residential sources. The problem is worsened by the disposal of carcasses, open excrement, and large-scale bathing in the river. The method of waste collection and disposal in the city is neither scientifically valid nor efficient. Due to several factors and technical challenges, the government's various initiatives have not succeeded in enhancing the situation. Mainly because of ignorance, a lack of discipline, and an unhealthy culture, the general public shares equal responsibility. The various strategies employed to lessen pollution in the Yamuna River were classified into two groups: proactive and reactive. To avert the flow of waste water into the Yamuna River, the following defensive measures are employed: systematic collection, treatment, and disposal of all waste waters produced in Mathura; oversight of industrial waste water within industrial areas; enhancement of existing agricultural methods via regulated use of chemical fertilizers, insecticides, and pesticides; improved strategies for solid waste management; creation of public facilities at key ghats, including options for disposing of sacred materials; and the establishment of recreational parks and embankments, or retaining structures (serving as a barrier between the town and the river) along the riverbanks as part of an eco-friendly pollution control approach, along with legislative measures like the implementation of scientifically developed effluent regulations, corruptionfree financial management, and strict, qualified supervision of construction projects. Among the initiatives implemented were increasing awareness and cultivating a sense of accountability within the Indian community and the broader public, ensuring sufficient flow in the Yamuna river, especially during low periods, enhancing the river's self-purification abilities through artificial and in-stream aeration, strategically employing the river's ability to accommodate waste, and constructing an artificial lake to retain floodwaters before discharging them into the Yamuna in dry flow periods. Along with the implementation of the various control measures stated earlier, he stressed the critical necessity to penalize offenders and defaulters

by enforcing a penalty system and offering adequate rewards to the fine collectors to uphold their integrity and responsibility. Increasing public awareness in the suggested ways and steering clear of individuals lacking environmental technology expertise can also expedite the cleanup of the Yamuna River.

The community-driven strategy for artificial recharge utilizing conventional water harvesting methods was described by Rajendra Singh (2016). He underlined that the best method to protect the environment and help farmers in Indian villages is to mobilize the community and civil society to take action on conservation and natural resource management for rural development in India. Under the direction of TBS, the local community used traditional water gathering techniques to revitalize a nearby river, replenish groundwater, and re-green a village. Since 1985, 1086 villages in the Alwar district have had 8600 tiny water harvesting talabs constructed. As a result, the shallow aquifer's water level rose, more land was planted to single and double crops, and social forestry and agro-forestry increased the amount of forest cover. To establish guidelines for water use, the locals have also established a "Arvari Sansad." The local communities benefit greatly from the water conservation initiatives in many ways. Migration has significantly decreased and employment prospects have grown.

2.1 Research Gap

The revitalization of the Parbati and Sarni rivers in the Chambal

region should be considered through a comprehensive ecological and socio-political perspective. Previous studies strongly advocate for watershed management, biodiversity tracking, and collaborative methods. Nevertheless, there are few localized studies on these rivers, highlighting a gap that upcoming research and policy measures need to fill.

3. Objectives of the study:

- To restore the natural flow and ecological balance of the Parbati Sarni River.
- To enhance aquatic and riparian biodiversity.
- To implement watershed management and afforestation measures.
- To engage local communities in sustainable practices and conservation.
- To monitor ecological indicators to assess the impact of rejuvenation.

4. Methodology

Study Area

The Parbati Sarni River traverses through ecologically sensitive zones of the Chambal Range, home to endangered species and vital to regional hydrology. The area encompasses riverine habitats, agricultural lands, forest patches, and rural settlements.

Methods Used:

- **Baseline Survey**: Ecological and hydrological assessments to understand current river health.
- **Biodiversity Mapping**: Identification of flora and fauna, especially endemic and threatened species.
- Restoration Measures:

- Removal of invasive species.
- o Riverbank stabilization.
- Reforestation with native species.
- Wetland restoration and creation of fish sanctuaries.
- Community Engagement: Awareness programs, participatory planning, and livelihood support through eco-tourism and sustainable agriculture.
- Monitoring & Evaluation: Regular monitoring of water quality, species diversity, and vegetation cover using GIS and remote sensing tools.

Data Requirements

A. Hydrological Data

- River flow rate (discharge) over time.
- Seasonal variation in water levels.
- Sediment load and turbidity.

B. Water Quality Parameters

- pH, DO (Dissolved Oxygen),
 BOD (Biological Oxygen
 Demand), COD (Chemical
 Oxygen Demand).
- Nitrate, Phosphate, Heavy metals.
- Temperature, EC (Electrical Conductivity), TDS (Total Dissolved Solids).

C. Biodiversity Indicators

- Species diversity (aquatic and riparian flora and fauna).
- Fish population surveys.
- Macroinvertebrate counts (as bio-indicators).
- Avifauna (bird diversity) presence along riparian

zones.

D. Anthropogenic Impact Data

- Land-use patterns in the river basin.
- Agricultural and industrial waste discharge.
- Encroachments or channelization.
- Deforestation and urbanization trends.

E. Community and Stakeholder Engagement

- Local community perceptions (questionnaires or interviews).
- NGO or forest department reports.
- Grazing, fishing, and agriculture practices.

Methodology for Analysis

A. Before-After-Control-Impact (BACI) Analysis

- Compare data from before and after rejuvenation projects.
- Include control sites where no intervention was done.

B. Biodiversity Indices

- Shannon-Weiner Index, Simpson's Index for species diversity.
- Index of Biotic Integrity
 (IBI) for fish and
 macroinvertebrates.

C. Water Quality Index (WQI)

 Composite scores from water parameters to rate water health.

D. Geospatial Analysis

- Map rejuvenation areas, vegetation density changes, land use.
- Use NDVI (Normalized Difference Vegetation Index) to measure riparian vegetation health.

5. Analysis & Discussion

Indicator	Before Interven -tion	After 5 Years
Base Flow	Intermitt ent	Year-round flow in segments
Native Fish Species	12	24
Bird Diversity	< 30 species	> 90 species
Soil Moisture Index	Low	Moderate to high
Community Participation	Minimal	500+ households involved

• Revival of Aquatic and Terrestrial Biodiversity

One of the foremost expeActed outcomes is the enhancement of biodiversity. The Chambal region, already home to endangered species like the gharial, Indian skimmer, and Gangetic dolphin, stands to benefit significantly from the restoration of the Parbati Sarni River. Clean and consistent water flow will improve the quality of aquatic habitats, enabling the return and proliferation of native fish species, macro-invertebrates, and other aquatic organisms. Additionally, riparian vegetation will recover, providing shelter and food sources for birds, mammals, and insects. This interconnected ecosystem revival will create a more resilient biodiversity hotspot.

• Improved Water Quality and Groundwater Recharge

Rejuvenation efforts typically include desilting, afforestation, and pollution control—measures that directly improve water quality. The reduction of pollutants such as agricultural runoff

and untreated sewage will result in safer water for human and wildlife consumption. Moreover, the implementation of watershed management practices and rainwater harvesting is expected to enhance groundwater recharge, addressing the alarming decline in water tables in the region.

Increased Agricultural Productivity and Sustainable Livelihoods

With rejuvenation comes more predictable and clean water supply, which can boost agricultural productivity in the adjacent villages that depend on the river for irrigation. Improved soil moisture and decreased dependency on chemical inputs (due to better natural nutrient cycling) will allow for sustainable farming practices. This ecological revival, in turn, opens up new opportunities for eco-tourism, agroforestry, and fisheries, thereby diversifying and strengthening rural livelihoods.

Community Participation and Environmental Stewardship

A well-planned river revival initiative encourages community involvement in conservation. Through awareness programs, afforestation drives, and river monitoring, local populations become stakeholders in maintaining the river's health. This nurtures a culture of environmental stewardship, where the community becomes both a beneficiary and guardian of natural resources.

Climate Change Mitigation and Resilience

Rejuvenated rivers act as climate buffers, mitigating extreme weather events by regulating temperatures, maintaining humidity, and providing carbon sinks through riparian forests. As the Parbati Sarni River's ecosystem stabilizes, the region's resilience to droughts, floods, and land degradation will improve, making it an integral part of local climate adaptation strategies.

• Restoration of Cultural and Historical Significance

Rivers in India are not just water bodies but cultural entities. Rejuvenating the Parbati Sarni River has the potential to rekindle traditional connections with nature, restoring sacred groves, pilgrimage paths, and community rituals that revolve around the river. This cultural revival supports a holistic approach to conservation by blending ecological restoration with sociocultural values.

6. Conclusion

The rejuvenation of the Parbati Sarni River is not merely an environmental intervention—it is a transformative journey toward ecological integrity, sustainable development, and cultural resurgence in the Chambal Range. By emphasizing biodiversity enhancement and ecosystem revival, the initiative promises long-term benefits for both nature and humanity. Strategic implementation, scientific planning, and robust

community participation will ensure that the Parbati Sarni River flows not just as a waterway, but as a lifeline for generations to come.

7. Recommendations

Here's a set of recommendations for the rejuvenation of the Parbati Sarni River to enhance biodiversity and support river revival in the Chambal Range. These recommendations combine ecological restoration, community participation, and sustainable development practices tailored to the semi-arid terrain and fragile riverine ecosystem of the region.

1. Riverfront Ecosystem Restoration

- Native Vegetation Plantation: Reintroduce native riparian plant species along the riverbanks to stabilize soil, filter pollutants, and provide habitats.
- Wetland Creation & Protection: Develop or restore wetland patches to support migratory birds, amphibians, and aquatic biodiversity.
- Check Dams & Boulder Structures: Install small check dams or loose boulder structures upstream to reduce runoff velocity and enhance groundwater recharge.

2. Pollution Control & Water Quality Improvement

Sewage Treatment Units:
 Set up decentralized
 wastewater treatment

- systems (DEWATS) in nearby villages to prevent direct discharge of sewage into the river.
- Agrochemical Regulation:
 Promote organic farming
 practices in the catchment to
 reduce pesticide and fertilizer runoff.
- Water Quality Monitoring: Establish regular testing stations to track key parameters like BOD, COD, pH, and heavy metal content.
- 3. Biodiversity Conservation Programs
- **Fish Ladder & Breeding Zones:** Designate fish breeding sanctuaries and install fish ladders at existing barriers to allow aquatic migration.
- Conservation of Endangered Species: Conduct species-specific programs for otters, turtles, and gharials, connecting with existing conservation efforts of the Chambal River.
- Community-Based Biodiversity Watch Groups: Engage local residents in monitoring and protecting flora and fauna.
- 4. Community Engagement & Livelihood Enhancement
- Eco-Tourism Development:
 Promote bird-watching
 trails, boating zones, and
 interpretation centers to
 raise awareness and generate income.
- River Festivals & Awareness Campaigns: Celebrate the cultural value of the

- Parbati Sarni River through events involving schools, panchayats, and local NGOs.
- Sustainable Agriculture & Water Use Training: Educate farmers on water-efficient irrigation and soil conservation methods.
- 5. Scientific and Administrative Support
- Catchment Area Treatment Plan: Use remote sensing and GIS to map and manage land use and erosion-prone areas.
- River Health Index Development: Create a localized River Health Index combining ecological, hydrological, and socio-economic indicators.
- Inter-Departmental Coordination: Involve forest, water resources, irrigation, and rural development departments for integrated action.
- 6. Climate Resilience and Future Planning
- Rainwater Harvesting Systems: Implement community-level and rooftop harvesting units to support dry season flows.
- Climate Change Impact Studies: Conduct studies to understand future hydrological changes and biodiversity stress.
- Disaster Preparedness
 Plans: Integrate flood and drought risk management with river rejuvenation efforts.

8. References

- Bassi, N., Kumar, M. D., Sharma, A., & Pardha-Saradhi, P. (2014). Status of River Biodiversity in India: River Rejuvenation for Conservation of Biodiversity. International Journal of River Basin Management, 12(1), 39–51.
- Chakraborty, R., Das, S., & Banerjee, S. (2019). Riverbank restoration for enhancing aquatic biodiversity: A case from Eastern India. *Ecohydrology & Hydrobiology*, 19(2), 241–249.
- Devendra S. Bhargava. Revival of Mathura's ailing Yamuna River. Environmentalist. 2006;26:111–122.
- Mehta, L., & Shah, A. (2020). Community Participation in River Rejuvenation: Case Studies from Central India. Water Alternatives, 13(3), 612-629.
- Ministry of Environment, Forest and Climate Change (MoEFCC). (2021). River Rejuvenation and Biodiversity Conservation Strategies in India. Government of India.
- Rajendra Singh. Community driven approach for artificial recharge –TBS experience. India Water Portal; 2016.
- Rao, R. J., Sharma, R. K., & Basu, D. (2011). Conservation of Gharial (*Gavialis gangeticus*) in the National Chambal Sanctuary. *Crocodile Specialist Group Newsletter*, 30(1), 4–8.
- Singh, A., Tiwari, A. K., & Mishra, P. (2017). Impact of anthropogenic activities on water quality and biodiversity in Indian rivers: A case study of Madhya Pradesh. *Journal of Environmental Biology*, 38(2), 231–238.

Environmental Management

Peer Reviewed

Environmental hazards of Chemical fertilizers and pesticides and the possible ways to prevent them

Shakti K. Prabhuji¹*, Richa¹, Shail Pande², Gaurav K. Srivastava¹ and Madhulika Srivastava³

Abstract

In India, the green revolution was introduced with the initiation of high yielding varieties of crops with better cultivation practices; and enormous amount of chemical fertilizers, chemical pesticides and other chemical inputs were introduced. The intensive use of inputs has not only polluted the soil, water and the environment causing their slow degradation, but, also affected the lives of human population. The present day need is to reduce the chemical fertilizers and pesticides usage and maximize the use of organic manures and biofertilizers. The future prospects of biofertilizers has been initiated with the advent of firstly, the development of multifunctional microbial consortia which help in preparation of biofertilizers that improve the growth and the produce of crop plants, as well as an enhancement and maintenance of soil fertility; and secondly, the development of "herbal biofertilizers" that enhance the productivity of crop plants together with its protection against soilborne fungal and bacterial pathogens and eliminate the use of harsh and hazardous chemical pesticides in the 21st. century. Furthermore, a chain of studies and researches are required to develop more potent biofertilizers, on the lines of "Herbal Biofertilizers" and "Nano-Biofertilizers".

Introduction

The green revolution together

with industrial revolution definitely fulfilled the food demand of the growing population by increasing the crop production per unit area; however, the use of synthetic fertilizers has also increased enormously in agriculture having a continuous demand (Ayoub, 1999). Up to 1950, the major portion of the nutrients required for grain production were met by the "natural fertility" of the soil with almost negligible amount of added fertilizers, but, in 1970 onwards more than 70% of the grain production would need sumptuous amount of chemical fertilizers for the same which would increase in sync with the increasing global population. We are now facing the menace of excessive use of chemical fertilizers and chemical pesticides. These chemicals are the root cause of several health hazards and irreversible environmental pollution.

Problems addressed and possible solutions

Excessive use of chemical fertilizers and pesticides:

In India, the green revolution was introduced with the initiation of high yielding varieties of crops with better cultivation practices; and enormous amount of chemical fertilizers, chemical pesticides and other chemical inputs were introduced. It has been recorded that within a period of 40 years the consumption of chemical fertilizers and chemical pesticides recorded an increase of 13.4 folds from 1951-52 to 1992-93; i.e., 0.5 kg/ha in 1951-52 increased enormously to 67.0 kg/ha of chemical fertilizers during 1992-93 and same was the situation with pesticides (Dahama, 2003) that firstly polluted the soil, water and the environment and later, adversely affected the human population. Surprising and the most damaging part is that such usage has been increasing at a constant pace thereafter causing more adverse effects on the surroundings.

The production of pesticides started in India in 1952 with the establishment of a plant for the production of BHC near Calcutta, and India is now the second largest manufacturer of pesticides in Asia after China and ranks twelfth globally. There has been a steady growth in the production of technical grade pesticides in India, from 5,000 metric tons in 1958 to 102,240 metric tons in 1998. In 1996-97 the demand for pesticides in terms of value was estimated to be around Rs. 22 billion (USD 0.5 billion),

¹Biotechnology and Molecular Biology Centre, M.G. Post Graduate College, Gorakhpur-273001, India

²D.A.V. Post Graduate College, Gorakhpur-273001, India

³Department of Botany, M.G. Post Graduate College, Gorakhpur-273001, India

^{*}Corresponding author e-mail: shaktiprabhuji@rediffmail.com

which is about 2% of the total world market.

On the eve of golden jubilee (1972 - 2022) United Nations Environment Programme (UNEP) has published a bulletin highlighting several alarming aspects about excessive use of chemical fertilizers and pesticides globally. The report indicates towards the following less-known dangerous points under the head - "Key findings":

- 1. Global demand, production and use of pesticides and fertilizers have expanded steadily during the past decades. Combined global sales continue to grow at about 4.1% per year and are projected to reach United States dollars (US\$) 309 billion by 2025.
- 2. Demand for crops, goods and services are fuelling the production and use of pesticides and fertilizers. Increased food demand is a main driver, but demand for crops used for feed, fibres, fuels and feed-stocks is also growing. A small fraction of crops is currently certified with sustainability standards.
- 3. While pesticides and fertilizers provide a range of benefits, current and projected production and use, and the lack of effective management, come at the cost of a range of adverse impacts on the environment and health throughout their life cycles. This is not sustainable.
- 4. Pesticides cause both acute and long-term health impacts. About 385 million cases of non-fatal unintentional pesticide poisonings

- have been estimated to occur every year, with approximately 11,000 deaths. There is also a significant association between occupational and residential exposure to pesticides and adverse health outcomes, including cancers and neurological, immunological and reproductive effects. Pesticide dietary risks, on the other hand, are reported to be limited.
- 5. Pesticides and their degraded products are ubiquitous in the environment, including soils and surface and groundwater. They are frequently detected at levels exceeding legal or environmental standards. Adverse impacts of pesticides have been observed on bees and natural enemies of pests, bird populations, aquatic organisms, and biodiversity.
- 6. Adverse impacts of fertilizers are mainly caused by their excessive and inefficient use. This leads to nutrient losses to the environment and other adverse impacts, such as drinking water contamination and eutrophication of freshwater systems and coastal zones. Some fertilizers also impact human lives as a result of unsafe storage practices.
- 7. Knowledge gaps still exist that hamper a full understanding of some of the mechanisms and processes leading to the adverse impacts of pesticides and fertilizers, together with the effectiveness of some control measures. Yet available evidence provides sufficient

- justification for additional public and private actions to avoid or reduce potentially serious or irreversible adverse impacts.
- 8. Progress has been made in strengthening management of pesticides and fertilizers, including through International agreements. However, these agreements have not been sufficient to address all adverse environmental and health impacts comprehensively.
- 9. To achieve a chemical-safe future with minimal adverse impacts from pesticides and fertilizers, both incremental and transformative actions are required that tackle root causes and shift market demand, coupled with supportive and enabling measures.
- 10. While stakeholders in the value chain and agri-food system are contributing to minimize adverse effects of pesticides and fertilizers, there is further need to scale up their commitment through targets and road maps.

The country, at present, is not in a position to completely eliminate the use of chemicals especially fertilizers. However, it would not be difficult and unrealistic to phase out the use of these chemicals systematically. For this, the doses of chemical fertilizer need to be gradually reduced and be balanced by increasing the use of optimum quantity of organic manures and biofertilizers. Most of the State Agricultural Universities are doing very little work in minimizing the use of chemicals and increasing the use of biofertilizers, however, the work on the various aspects of production of biofertilizer from organic (house-hold) waste is gradually catching pace (Sinha *et al.*, 2010; Sarkar *et al.*, 2011; Dandotiya and Agrawal, 2014; Tanksali *et al.*, 2014; Ambekar *et al.*, 2015; Udhay Kumar *et al.*, 2015; Avidov *et al.*, 2016; Richa *et al.*, 2016).

The excessive use of chemical fertilizers, mostly in imbalanced nutritional proportions, affects the agriculture and the society in two ways - firstly, imbalanced or non-proportionate composition of nutrients in the consumable parts of the plants and secondly, the imbalanced nutrients make the soils of the fields less fertile or in other words negatively affect the fertility of the soil. Similarly, uncontrolled chemical pesticides management also expresses in two ways firstly, it kills the eco-friendly and crop-friendly microbial consortia in the soils and secondly, the excess chemical pesticides show a residual effect on cereal grains, vegetables and fruits and directly affect the consumers causing health hazards. Now, question rises how to get rid of such menace?

Use of organic / biofertilizers and biopesticides:

The present day need is to reduce the chemical fertilizers and pesticides usage and maximize the use of organic manures and biofertilizers. However, commercial sale of organic manure needs proper quality control standards also so that the poor cultivator may not be cheated on one hand and the ecosystem may not be disturbed on the other.

The use of sewage and

sludge in agricultural farms in India is an old practice with the first sewage farm coming up in 1895 at Ahmedabad. At present, the country has around 200 sewage farms (Jurwarkar et al., 1991) where the organic wastes are in use in 50,000 hectares of Narwal et al. (1993) reported per day availability of raw sewage in Haryana and Punjab, which were 163 million litres and 113.4 million litres respectively. At present, an estimated 17.4 million cubic litres of raw sewage are generated in urban areas of the country (Kansal, 1992).

Besides these, every household generates approximately 1.5 to 2.0 kg of solid waste which comes to 168.13 tonnes per day on 8.0 lac of urban population (GEAG Report, 2010 a, b). About 72% of the total solid wastes are biodegradable which may be transformed into biofertilizer. Similarly, the crop residues like stem cuttings, dried leaves and roots constitute the agricultural wastes. The latest literature, in this context, has been of Sinha et al. (2010); Sarkar et al. (2011); Dandotiya and Agrawal (2014); Tanksali et al. (2014); Ambekar et al. (2015); Udhay Kumar et al.(2015), Avidov et al.(2016) and Richa et al., (2016).

The urban residents dispose the wastes on the roads or in dust-bins either packed in polythene bags or loose. The wandering ruminant cattle or animals like dogs ingest their desired materials and in so doing scatter the matter in wider areas which becomes the den of several disease causing microorganisms and, at times, results into the outbreak of cholera and other infectious diseases. About 72% of

the total solid wastes are biodegradable which may be transformed into biofertilizer (Fig. 1).

The Concept of Herbal Biofertilizers:

Being pioneer in this field, Richa et al. (2016 a) developed low cost and highly effective biofertilizers from kitchen-wastes and found them more productive as compared to commercial biofertilizers on crops like wheat, paddy and maize (Richa et al., 2016 b; 2017 a). Later, a new concept of the preparation of herbal biofertilizer has been visualized to have a combined effect of good quality biofertilizer together with an effective biopesticide. For this the prepared biofertilizer, using the kitchen biodegradable wastes, has been mixed thoroughly, in a ratio of 5:1 with the dried and finely powdered leaves of Lawsonia inermis, Boerhaavia diffusa, Cordia myxa, Flacourtia jungomas and Terminalia arjuna. The results indicated that all the plants which were grown using the herbal biofertilizer, excelled on all the parameters tested (chlorophyll contents in leaves and Nitrate Reductase activity) than the normal biofertilizer used as control. Furthermore, following addition of mixture of fungal and bacterial soil-borne plant pathogens to the control and experimental pots, the plants showed diseased symptoms that appeared after 15 - 20 days of incubation period in the control plants whereas the experimental plants remained healthy as before (Richa et al., 2017 b) and therefore, the herbal biofertilizers have been found to eliminate the use of harsh chemical fertilizers and pesticides (Richa et al., 2021).

The herbal biofertilizer has

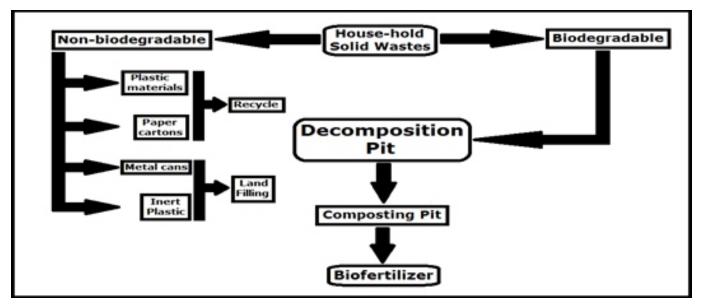


Fig. 1: The fate of House-hold solid wastes (After Prabhuji et al., 2021)

also been recommended to cultivate medicinal plants to procure better quantity and quality of secondary metabolites (the biochemicals that are used as medicines) together with better plant growth (Richa et al., 2020). The dried and finely powdered leaves of only certain plants (Lawsonia inermis, Boerhaavia diffusa, Cordia myxa, Flacourtia jungomas and Terminalia arjuna) have been used to prepare "Herbal Biofertilizer" to combat with the soil-borne fungal and bacterial pathogens (Richa et al., 2017 b), however, there are lots of more potent plant varieties to prepare new combinations for studies.

It appeared likely that the addition of dried and finely powdered leaves of Lawsonia inermis, Boerhaavia diffusa, Cordia myxa, Flacourtia jungomas and Terminalia arjuna to the prepared biofertilizer has played a crucial role to have supplied antifungal and antibacterial biochemicals to the crop plants via soil and made them disease-free. An important point to note is that the intensity of immunity of the plants may vary with the change in medicinal

plants added to the herbal biofertilizer. However, further detailed studies on the role of secondary metabolites of these medicinal plants in controlling the pathogenic nature of the plant pathogen will be required. Furthermore, extensive studies are required to assess the efficacy of herbal biofertilizers to combat with air-borne / seed-borne pathogens. Coating of herbal biofertilizer on seeds, prior to sowing, may effectively control the seed-borne diseases; however, the major challenge would be the control of air-borne diseases which may need painstaking research maneuvers.

The Concept of Nano-biofertilizers:

Fertilizers played a very important role in the success of green revolution but created negative impacts on the environment. Keeping in view the agrochemicals in general are used in more environmentally safe and sustainable manner using nanotechnology (Singh et al. 2018, Jogaiah et al. 2020, Mishra et al. 2017). Nano-biofertilizers play important role in sustainable

agriculture to increase the yield with increased nutrient use efficiency, reduce wastage of fertilizers thereby reducing the cost of cultivation as well as frequency of application (Tarafdar et al. 2015). Although nano-biofertilizers have a great opportunity for sustainable agriculture but environmental and health safety issues are very important before they are commercialized. More research is needed in this direction as many countries do not have bio-safety guidelines in nano-biofertilizers (Prabhuji *et al.*, 2021).

The Overview

Green Revolution in India was mainly realized with the introduction of high yielding varieties of various crops and by following intensive cultivation practices with the use of fertilizers, pesticides and other inputs. The intensive use of inputs has not only polluted the soil, water and the environment causing their slow degradation, but, also affected the lives of human population. The present day need is to reduce the chemical fertilizers and pesticides usage

and maximize the use of organic manures and biofertilizers. Biofertilizers have been prepared using kitchen wastes, agricultural wastes and sewage etc. with the help of microbial consortia as decomposers and biofertilizers have been found to be far better than chemical fertilizers without any adverse effects on the environment. The future prospects of biofertilizers has been initiated with the advent of firstly, the development of multi-functional microbial consortia which help in preparation of biofertilizers that improve the growth and the produce of crop plants, as well as an enhancement and maintenance of soil fertility; and secondly, the development of "herbal biofertilizers" that enhance the productivity of crop plants together with its protection against soil-borne fungal and bacterial pathogens and eliminate the use of harsh and hazardous chemical pesticides in the 21st. century. Furthermore, a chain of studies and researches are required to develop more potent biofertilizers, on the lines of "Herbal Biofertilizers" and "Nano-Biofertilizers".

References

- Ayoub, AT (1999). Fertilizers and the Environment. Nutrient Cycling in Agro-ecosystems, 55:117-121.
- Ambekar K, Misal SA and Choure A (2015). Biocomposting for fertilizer, International Journal of Engineering and Technical Research, 3(8): 101–103.
- Avidov A, Saadi I, Krassnovsky A, Hannan A, Medina S, Raviv M, Chen Y and Laor Y (2016). Composting of Municipal sewage in forced aerated polyethylene sleeves, Proc. International Conference on "Circular Economy and Organic

- *Waste"* (25 28 *May*, 2016)) *ORBIT*, 2016, *Greece*; pp.16.
- Dahama AK (2003). Organic Farming for Sustainable Agriculture, Agrobios (India), Jodhpur, India.
- Dandotiya P and Agrawal OP (2014).

 Domestic method of kitchen and garden waste management, *International Journal of Science and Research*, 3(6): 1322-1327.
- GEAG Report (2010 a). Environment of Gorakhpur City: A people's Report, Gorakhpur Environmental Action Group, pp. 78.
- GEAG Report (2010 b). Solid Waste: 2031, Vision Sheets of Gorakhpur, published by Gorakhpur Environmental Action Group under ACCCRN process.
- Jogaiah S, Singh HB, Leonardo FF and Renata de Lima (2020). Advances in Nano-fertilizers and Nano-pesticides in Agriculture. Elsevier p.616.
- Jurwarkar AS, Deshbhartar PB and Bal AS (1991). Exploitation of nutritional potential of sewage and sludge through land application, In: Asia Experiences in Integral Plant Nutrition, RAPA-FAO Bangkok, pp. 178-201.
- Kansal BD (1992). Effect of waste disposal on soils and plants, In: Changing Scenario of our Environment (Eds. D.S. Dhaliwal, B.S. Hansra and N. Jerath), , PAU, Ludhiana, pp. 197-206.
- Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017). Integrated Approach of Agrinanotechnology: Challenges and Future Trends, *Frontiers in P l a n t S c i e n c e , 8 .* doi.org/10.3389/fpls.2017.00471.
- Narwal RP, Gupta AP, Singh A and Karwasra SPS (1993). Composition of some city waste waters and their effect on soil

- characteristics, *Ann. Biol.*, 9: 239-245.
- Prabhuji SK, Rao GP, Singh HB, Richa, Pande S and Srivastava GK (2021). Role of biofertilizers and organic manure in ecofriendly agriculture: retrospect and prospects, RASSA Jour. Sci. for Society, 3(3): 145–152.
- Richa, Tiwari RK, Wajih SA and Prabhuji SK (2016 a). Biofertiliser from Household Wastes, Climate Change and Environmental Sustainability, 4(2):224-228.
- Richa, Tiwari RK, Wajih SA and Prabhuji SK (2016 b). Effects of kitchen waste biofertilizer on growth and development of Wheat (*Triticum aestivum L.*) crop, *International Journal of Science, Technology and Society*, 2(1&2): 19-23.
- Richa, Tiwari RK, Wajih SA, Prabhuji SK and Srivastava GK (2017 a). Kitchen-waste biofertilizer, a better nutrient supplier than the traditional fertilizers in wheat (*Triticum aestivum*), Rice (*Oryza sativa*) and Maize (*Zea mays*) crops, *Pollution Research*, 36(3):270 275.
- Richa, Tiwari RK, Wajih SA, Prabhuji SK and Srivastava GK (2017 b). Biofertilizer produced by biodegradable kitchen waste and leaves of certain medicinal plants provide pathogen resistance to crop plants with high yield, *Medicinal Plants*, 9(3):180–183.
- Richa, Prabhuji SK, Wajih SA, Srivastava GK and Tiwari RK (2020). Concept of herbal biofertilizer for cultivation of medicinal plants with good quantity and quality secondary metabolites, *Medicinal Plants*, 12(2):169–172.
- Richa, Prabhuji SK, Srivastava AK and Srivastava S (2021). The concept of Herbal Biofertilizer to eliminate adverse effects of chemical fertilizers and pesticides, Research Journal of

Agricultural Sciences, 12(1): 213 –214.

Sarkar P, Meghvanshi M and Singh R (2011). Microbial consortium: a new approach in effective degradation of organic kitchen wastes, *International Journal of Environmental Science and Development*, 2 (3); June, 2011.

Singh HB, Mishra S, Leonardo FF and Renata de Lima (2018). Emerging Trends in Agrinanotechnology. CABI,, U.K. p.302.

Sinha A, Kumar R, Srivastava S and Srivastava M (2010). Production of organic manure from kitchen waste: Ensuring livelihood of resource poor women, Proc. National Conference on Biodiversity, Development and Poverty Alleviation, Uttar Pradesh State Biodiversity Board, Lucknow; pp. 125–127.

Tanksali AS, Angadi SS and Arwikar A (2014). Treatment of kitchen waste by microbial culture, International Journal of Research in Engineering and Technology, 03 (Special Issue: 06): 37-44.

Tarafdar JC, Rathore I and Thomas E (2015). Enhancing nutrient use efficiency through nanotechnological interven-

tions. *Indian J. Fertilizer*, 11(12): 46-51.

Udhay Kumar K, Henock and Tsegay (2015). Conversion of solid waste into Biofertilizer by vermicomposting – a case study of Padmanadapuram, International Journal of Innovative Research in Science, Engineering and Technology, 4(6): 3801 – 3808.

UNEP Bulletin (1972 – 2022) "Environmental and health impacts of pesticides and fertilizers and ways of minimizing them – Envisioning a chemical-safe world" Bulletin, pp. 24.

Unique Villages In India

01. SHANI SHIGNAPUR, Maharashtra.

All Houses in the entire village are without Doors.

Even No Police Station.

No Thefts.

02. SHETPHAL, Maharashtra.

Villagers have SNAKES in every family as their family members.

03. HIWARE BAZAR, Maharashtra.

Richest Village in India.

60 Millionaires.

No one is poor

Highest GDP.

04. PUNSARI, Gujrat.

Most modern Village.

All Houses with CCTV & WI-FI.

All street lights are Solar Powered.

05. JAMBUR, Gujarat.

All villagers are Indians Still all look like Africans.

Nicknamed as African Village.

06. KULDHARA, Rajasthan.

Haunted village.

No one lives there.

A village without villagers

All Houses are abandoned.

07. KODINHI, Kerela.

Village of TWINS.

More than 400 Twins.

08. MATTUR, Karnataka.

Village with 100% SANSKRIT speaking villagers in their normal day to day conversation.

09. BARWAAN KALA, Bihar.

Village of Bachelors.

No marriage since last 50 years.

10. MAWLYNNONG, Meghalaya.

Cleanest village of Asia.

Also, with an amazing Balancing huge Rock on a tiny rock.

11. RONGDOI, Assam.

As per Villagers beliefs, Frogs are married to get RAINS.

12. KORLAI village, Raigad, Maharashtra.

The only village with all villagers speaking Portuguese language.

Many of us don't know these unique things of these VILLLAGES

IN OUR OWN COUNTRY...!!

Technology

Peer Reviewed

Artificial Intelligence: (The Evolution and Impact of Artificial Intelligence in Geospatial Technology)

Pallavi Singh¹*; Mamta Shukla²; Dr. Sudhakar Shukla³

Abstract

One of the 21st century's most revolutionary and disruptive technologies is artificial intelligence (AI). The notion that machines could emulate human intelligence has long captivated scientists and investigators. Artificial intelligence (AI) has developed over time from a theoretical idea to a real force influencing many facets of our life. This essay explores the applications, advantages, difficulties, and ethical issues of artificial intelligence by delving into its past, present, and possible future.

Background

The origins of artificial intelligence (AI) can be found in the mythologies of ancient civilizations, which portrayed manmade creatures as intelligent humans. On the other hand, AI was officially established as a scientific field in the middle of the 20th century. In 1956, early pioneers at the Dartmouth Conference created the phrase "artificial intelligence" in reference to their goal of building machines that might mimic human intelligence. Although the early years saw great ambitions, due to technology limits, progress was slower than expected.

AI in Real World Applications

The field of artificial intelligence has seen tremendous change in the last several years due to advances in computing power, machine learning, and neural networks. Without explicit programming, machine learning, a subset of artificial intelligence, allows systems to learn from data and gradually improve performance. Neural networks with multiple layers are used in deep learning, a kind of machine learning that enables sophisticated pattern detection and decision-making.

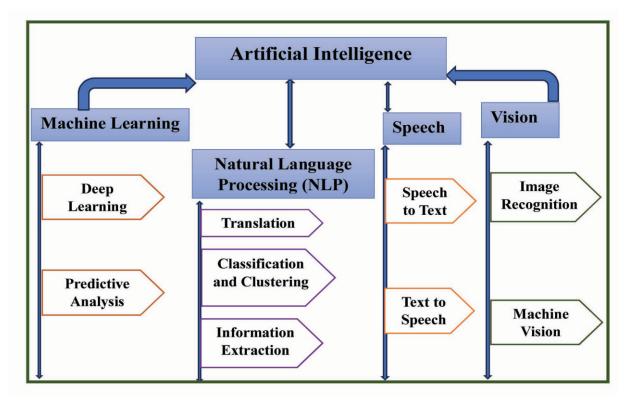
Applications of AI are now widely used across many industries. AI helps with drug discovery, personalised medicine, and diagnostics in the healthcare industry. It drives fraud detection and algorithmic trading in the financial sector. AI is used in transportation by self-driving cars to assist with navigation and decision-making. Natural language processing, recommendation engines, and virtual personal assistants are all commonplace in our daily lives, demonstrating the pervasive effect of artificial intelligence.

Aspects of Artificial Intelligence

1. Deep learning and machine learning

Machine Learning: Without explicit programming, machines can learn from experience and become more intelligent. Machine learning is a subset of artificial intelligence. It entails the application of algorithms that enable computers to recognise trends and render judgements using data. In machine learning, supervised learning, unsupervised learning, and reinforcement learning are often used paradigms.

Deep Learning: Using multiple-layered neural networks, or "deep neural networks," deep learning is a specialised type of machine learning. This makes it possible to process enormous volumes of data and identify complex patterns. Natural language processing, image and audio identification, and playing strategy games like Go have all benefited greatly from deep learning.


2. AI and Creativity

The idea that creativity is a characteristic that is exclusive to

¹Project Scientist, Remote Sensing Applications Centre U.P.

²M. Sc IInd year, Integral University Kursi Road Lucknow U.P.

³Scientist-SE & Head of School of Geoinformatics, Remote Sensing Applications Centre Lucknow U.P. Corresponding author *1(pallavisingh15797@gmail.com)

humans is being challenged by the growing application of AI in creative industries. GPT-3 from OpenAI is one example of a generative model that can produce realistic text, images, and music. AI tools help with design, content generation, and even video game development. The essence of art and creative expression is called into question by the combination of human ingenuity with AI capabilities.

3. Artificial Intelligence in Finance and Business

AI helps businesses make better decisions by analysing data and using predictive modelling. Natural language processing-powered chatbots improve consumer relationships. AI algorithms power algorithmic trading, fraud detection, and risk management in the financial industry. AI is used by roboadvisors to offer individualised investing advice.

4. AI in Medical Fields

Through improved drug development, personalised treatment,

and diagnostics, artificial intelligence is transforming healthcare. Medical image analysis is done by machine learning algorithms to help discover diseases like cancer early on. Proactive intervention is made possible by the use of predictive analytics to identify patients who may be at risk for specific illnesses. AI plays a key role in genomics as well, allowing customised treatment regimens depending on a patient's genetic composition.

5. The Function of Laws and Governments

All throughout the world, governments are realising that rules are necessary to control the advancement and application of AI. Ensuring accountability, fairness, and transparency are the main priorities. The responsible application of AI in delicate fields, algorithmic transparency, and data privacy are among the concerns being addressed by the establishment of regulatory frameworks.

AI in Geospatial Technology

Geospatial technology has benefited greatly from artificial intelligence (AI), which has improved skills in data processing, pattern identification, and decision-making.

The following are some applications of AI in geospatial technology:

a) Drones and Autonomous Vehicles

Autonomous cars and drones rely heavily on artificial intelligence (AI) for navigation and decision-making.

These technologies enable real-time decision-making, obstacle identification, and route planning through the use of computer vision, machine learning, and deep learning.

b) Change Detection

By comparing satellite photos or other geospatial information, artificial intelligence (AI) assists in detecting changes in geographical features over time. It is possible for machine learning algorithms to automatically identify changes in the environment, infrastructure, and land use.

Buildings, roads, vegetation, and land cover are examples of features that can be recognised and labelled using object detection and classification.

c) Mapping and Analysing Data

AI makes it easier to analyse complicated and big geospatial datasets.

Trends, correlations, and spatial patterns are found through the use of clustering and predictive modelling approaches.

Artificial Intelligence improves the integration of data from multiple sources, including social media, GPS, and satellite photography.

AI algorithms assist in combining various data kinds to offer a more thorough and precise picture of a place.

d) Natural Disasters Forecasting and Response

Natural disasters like hurricanes, floods, and wildfires are predicted and modelled using artificial intelligence (AI) by analysing historical geographical data.

During disasters, resource allocation and emergency response plans are optimised using the combined use of GIS and AI.

e) Precision Farming

Precision agriculture makes use of AI technology for disease detection, yield prediction, and crop monitoring, such as computer vision and machine learning. Drones with AI algorithms installed may evaluate crop health and suggest certain actions

f) Smart Cities and Urban Planning

AI analyses environmental data, transportation patterns, and population trends to help in urban planning.

AI is used in smart city projects to optimise resource management, transportation, and infrastructure.

g) Conservation of Wildlife and Environmental Monitoring

AI uses sensor data and satellite imaging analysis to help with wildlife monitoring and protection.

Machine learning models are able to track and identify threatened species, keep an eye on deforestation, and evaluate how human activity affects ecosystems.

The ongoing advancement of AI and geospatial technology integration presents fresh possibilities for drawing insightful conclusions from geographical data for a range of uses.

Advantages of Artificial Intelligence

Adopting AI offers a multitude of advantages.

AI-driven automation is characterised by increased accuracy, cost savings, and efficiency. AI in healthcare helps identify diseases early, which improves patient outcomes.

AI is used in education by personalised learning systems to meet the demands of each unique student. Chatbots with AI capabilities improve customer service by offering prompt responses and a better user experience.

Difficulties and Ethical Issues

Although AI has a lot of promise, there are drawbacks. Automation's ability to replace jobs creates questions about economic injustice.

Social injustices can be sustained by bias in AI systems, which are frequently a reflection of past prejudices seen in training data. As AI systems process massive volumes of personal data, privacy concerns surface.

These issues must be carefully considered in order to ensure the ethical and responsible development of AI, and continual attempts to reduce biases and hazards must be made.

Prospects for the Future

The direction of AI development is towards more innovation and societal integration in many domains. Complex issue solving is possible thanks to developments in quantum computing, reinforcement learning, and natural language processing. Regulations and guidelines pertaining to ethical AI are essential for promoting responsible development, eliminating bias, and protecting privacy.

Conclusion

Artificial intelligence has evolved from a theoretical idea to a disruptive force that is changing the way we communicate, work, and live. In order to ensure that the advantages of AI are realised without sacrificing social values, it is crucial that we strike a balance between innovation and ethical considerations as we navigate the future of AI. Artificial intelligence's development is

still a dynamic and fascinating path with the potential to significantly impact future events.

In summary, artificial intelligence has a wide-ranging influence on many different fields, influencing both the present and the future of technology. Maintaining a responsible and inclusive AI ecosystem requires striking a balance between innovation and ethical considerations as AI develops. Tapping into the full potential of artificial intelligence for the good of humanity will require ongoing study, cooperation, and a dedication to tackling obstacles.

References

- 1. Chen, Y., & Zhang, S. (2014). Object-based change detection in urban areas by using high spatial resolution images. IEEE Geoscience and Remote Sensing Letters, 11(10), 1777-1781.
- 2. Mont, O.K., Bleischwitz, R., de Haan, P., & Hofmeister, S. (2013). "Sustainable Consumption and Resource Management

- in the Light of Life Cycle Thinking." Sustainability, 5(6), 2838-2848.
- 3. Singh, D., & Ghosh, S. (2018). A Survey of Change Detection Methods on High Resolution Satellite Data. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 60-88.
- Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., ... & Portugali, Y. (2012). Smart cities of the future. The European Physical Journal Special Topics, 214(1), 481-518.
- 5. Pettorelli, N., Laurance, W. F., O'Brien, T. G., Wegmann, M., Nagendra, H., Turner, W., & Studds, C. E. (2014). Satellite remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 51(4), 839-848.
- 6. Cheng, Z., Caverlee, J., Lee, K., & Sui, D. (2012). Exploring Millions of Footprints in Location Sharing Services. In Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining

- (ASONAM), IEEE.
- 7. Yuan, F., & Sawaya, K. E. (2011). Applications of remote sensing to support urban sprawl policy and management. International Journal of Remote Sensing, 32(14), 4013-4028.
- 8. Geyer, R., Jambeck, J.R., & Law, K.L. (2017). "Production, use, and fate of all plastics ever made." Science Advances, 3(7), e1700782.
- 9. Kussul, N., Lavreniuk, M., & Skakun, S. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778-782.
- 10. Liang, J., Wu, J., Huang, X., & Lu, H. (2014). The changing pattern of urban heat islands in the metropolitan area of Beijing. In Remote Sensing of Urban and Suburban Areas (pp. 63-77). Springer.
- 11. International Energy Agency. (2019). "Renewables 2019: Analysis and Forecast to 2024." Retrieved from https://www.iea.org/reports/renewables-2019

मिलना बिछड़ना

एडवोकेट विशाल यादव

दो रास्ते थे एक साथ चलने को दूजा बिछड़ने को

मैंने साथ चलना चुना उसने बिछड़ना चुना मेरा सफर अबतक चल रहा है क्योंकि मेरा दोस्ताना उसकी यादों के भी साथ चल रहा है

और उसका सफर तो उसी ठौर खत्म हो गया जिस पल उसने मुझसे बिछड़ना चुना था अपने अपने रास्ते हैं वो बिछड़कर शायद खुश है और मैं,मुझे तो अब सुख दुख में भेद ही नहीं पता चलता

फिर भी गुजर ही रही है जिंदगी और शायद जिंदगी का नाम ही है मिलना और बिछड़ना!

कैथीशंकरपुर, लालगंज, आजमगढ़-276202 <u>yvishal532@gmail.com</u>

Peer Reviewed

Pollinators and Agricultural Productivity

Richi Awasthi¹, Rudra Pratap Singh² and Shivangi Maheshwari³

Abstract

Pollinators, a diverse group of animals including bees, butterflies, birds, and bats, play an indispensable role in global agricultural productivity. By facilitating the transfer of pollen between flowering plants, they are directly responsible for the reproduction and yield of a vast array of crops that form the backbone of our food supply. This article delves into the critical contributions of pollinators to agriculture, quantifying their economic value and illustrating the profound impact their decline would have on food security, human nutrition, and the global economy. It also explores the multifaceted threats endangering pollinator populations worldwide and outlines a range of sustainable strategies for their conservation, emphasizing that safeguarding these vital ecological partners is not merely an environmental imperative but a fundamental investment in the future of food.

Keywords:- Pollination, Crops, Biodiversity, Yield, Conservation

Introduction

Imagine a world without apples, almonds, strawberries, or even coffee. It's a bleak thought, but a reality that could unfold without the tireless work of some of nature's smallest and most efficient employees: pollinators. While often unseen or overlooked, these animals are fundamental to the existence of much of the food we eat, serving as the biological bridge that allows many plants to reproduce. From

the humble honeybee to the darting hummingbird, pollinators are responsible for the "sexual reproduction" of flowering plants, leading to the fruits, vegetables, nuts, and seeds that nourish billions across the globe.

It's estimated that approximately 75% of the world's leading food crops, and over 85% of flowering plants in general, rely on animal pollination to some extent. This isn't just about abundance; it's about diversity and nutritional quality.

Many of the micronutrientrich foods – fruits, vegetables, and nuts – are heavily pollinatordependent. The economic value of this natural service is staggering, contributing hundreds of billions of dollars annually to the global economy. Yet, despite their immense importance, pollinator populations are in alarming decline, facing a complex web of threats that directly jeopardize our food systems and the delicate balance of ecosystems. Understanding their role, appreciating their value, and actively working towards their conservation are critical steps in ensuring a sustainable and food-secure future (Pollinator.org.o.d.).

The Indispensable Role of Pollinators in Food Production

Pollination is the process by which pollen is transferred from

Source: The Conscientious Consumer

¹M.Sc. (Ag.) Student, ²Associate Scholar, ³PhD Scholar, Department of Entomology, College of Agriculture, Acharya N.D. University of Agriculture & Technology, Kumarganj, Ayodhya (U.P.)

the male part of a flower (anther) to the female part (stigma), enabling fertilization and the production of seeds and fruits. While some crops are wind pollinated (like corn and wheat) or self-pollinating, a vast majority of the world's most nutritious and economically significant crops require animal assistance. This biological service boosts both the quantity and quality of agricultural yields.

Increased Yields and Quality: The presence of healthy pollinator populations directly translates to higher crop yields and improved produce quality. For example, studies have shown that animal pollinators can increase canola yield by up to 15%, even though canola can selfpollinate. For crops like almonds, blueberries, and many types of squash and watermelon, the dependence on pollinators is almost complete; without them, harvests would be drastically reduced or entirely absent. Improved pollination can lead to larger fruits, more uniform sizes, and better marketability, benefiting farmers financially (Aizen et al., 2008).

Dietary Diversity and Nutritional Security: Pollinatordependent crops are often excellent sources of essential vitamins and minerals. For instance, a significant proportion of vitamin C, vitamin A (carotenoids), and various antioxidants are derived from crops that rely on animal pollination. The decline of pollinators could lead to a shift in global diets towards more staple crops like rice and potatoes, which are windpollinated or self-pollinating, resulting in a less diverse and potentially less nutritious food supply. This has significant implications for global public health and malnutrition.

Economic Value and Agricultural Sustainability: The economic contribution of pollinators to global agriculture is immense. Estimates suggest that the annual global food production reliant on pollinators is valued between \$235 billion and \$577 billion (USD).In the U.S. alone, insect pollination services add over \$34 billion annually to agricultural crops. This "free" ecological service reduces the need for expensive artificial pollination methods, enhancing the economic viability and resilience of farming operations. Farmers with robust natural pollinator populations often find themselves less dependent on renting commercial bee hives, saving substantial costs (Foobes et al., 2019).

The Alarming Decline: Threats to Pollinators

Despite their crucial role, pollinator populations world-wide are facing significant threats, leading to a concerning decline in their numbers. This decline is not attributed to a single factor but rather a complex interplay of environmental stressors.

1. Habitat Loss and Fragmentation: As human populations expand and agricultural practices intensify, natural habitats vital for pollinators are lost or fragmented. Monoculture farming, where vast areas are dedicated to a single crop, reduces floral diversity and nesting sites. Roads, urban development, and land conversion leave pollinators with fewer places to forage, breed, and overwinter. The continuous loss of meadows, prairies, and diverseflowering plants

- deprives them of essential nectar and pollen resources throughout the growing season.
- 2. Pesticide Exposure: The widespread use of pesticides, particularly insecticides, poses a severe threat to pollinators. Neonicotinoids, a class of systemic insecticides, are especially problematic as they are absorbed by plants and can be present in pollen and nectar, exposing pollinators to toxic levels even when not directly sprayed. These chemicals can cause lethal effects or sub-lethal impacts such as disorientation, impaired foraging ability, weakened immune systems, and reduced reproductive success. Herbicides also indirectly harm pollinators by eliminating wildflowers that serve as food sources.
- Climate Change: Shifting climate patterns disrupt the delicate synchrony between flowering plants and their pollinators. Earlier blooming times due to warming temperatures can mean that pollinators emerge before their food sources are available, leading to starvation. Extreme weather events like droughts, floods, and heat waves can directly impact pollinator populations, destroy habitats, and alter plant flowering cycles. Changes in temperature and precipitation can also affect pollinator migration patterns and the spread of diseases.
- 4. Diseases and Parasites:
 Pollinators, especially
 managed honeybee colonies, are susceptible to
 various diseases and para-

Source:DOI:10.3389/fmicb.2023.1114849 The Brewmasters of the Insect World – The Fascinating Biology of Cellophane Bees By University of California – IrvineApril 29, 2023

sites. The Varroa mite, for example, is a devastating parasite of honeybees that weakens colonies and transmits viruses, contributing significantly to colony collapse disorder. Pathogens like bacteria and fungi can also spread rapidly within stressed or crowded pollinator populations,

further exacerbate declines.

5. Invasive Species: Invasive plant species can outcompete native flora, reducing the availability of preferred nectar and pollen sources for native pollinators. Invasive insects or pathogens can also introduce new diseases or parasites to native pollinator populations, for which they may have no natural resistance.

Data and Facts: Quantifying the Impact

The decline in pollinators has tangible consequences for agriculture and the economy. Here are some key facts and figures:

• Global Economic Value: Between \$235 billion and \$577 billion (USD) worth of annual global food production relies on pollinator

- contributions (Bayer Global).
- Crop Dependence: Approximately 35% of the world's food crops, including many fruits, vegetables, and nuts, dependonant on animal pollinators to reproduce (FAO, U.S. Fish & Wildlife Service).
- Managed Honey Bees: While not native to the U.S., managed honey bees are responsible for up to \$5.4 billion in agricultural productivity in the U.S. alone (U.S. Fish & Wildlife Service).
- Pollinator Species at Risk:
 Over 70 species of pollinators are listed as endangered or threatened globally, with many more experiencing significant population declines (U.S. Fish & Wildlife Service). As

Table 1: Examples of Pollinator Contribution to Key Crops

Table 1: A selection of common crops illustrating their varying degrees of dependence on pollinators and the general types of pollinators involved.

Crop Type	Primary Pollinators	Pollinator Dependen ce Level	Economic Significance / Impact of Decline	
Almonds	Honey Bees (essential), Native Bees	Essential	Almost 100% dependent on honeybees; without them, harvest would be minimal, impacting a multi-billion dollar industry.	
Blueberries	Honey Bees, Bumblebees, Native Bees	Essential	Significant yield reduction and quality decline without sufficient pollination.	
Apples	Honey Bees, Bumblebees, Solitary Bees	High	Pollination improves fruit set, size, and quality.	
Coffee	Honey Bees, Stingless Bees, Solitary Bees	Modest to Great	Pollination enhances berry set and bean quality, impacting a major global commodity.	
Cacao (Chocolate)	Midges (tiny flies)	Essential	The entire chocolate industry, valued over\$100 billion, relies on these small flies.	
Watermelon	Honey Bees, Squash Bees, Bumblebees	Essential	Highly dependent on pollinators for fruit production.	
Soybeans	Honey Bees, Wild Bees (though often self- pollinating)	Little to Modest	While primarily self-pollinating, insect pollination can still boost yields and quality.	
Strawberries	Honey Bees, Bumblebees, Native Bees	High	Crucial for fruit size, shape, and overall yield.	


many as 40% of the world's insect species are threatened with extinction (World Economic Forum).

- **Historical Decline:** The number of managed honey bee colonies in the U.S. dropped from roughly 6 million in 1947 to less than 2.5 million today (Center for Food Safety).
- Yield Gaps: On small farms, which provide food for the most vulnerable populations globally, increased pollinator diversity can significantly increase productivity, with yield gaps potentially closed by a median of 24% through higher flower-visitor density (Garibaldi et al., 2016).

Strategies for Pollinator Conservation in Agriculture

Recognizing the urgent need to protect pollinators, farmers, policymakers, and consumers are increasingly adopting strategies to reverse their decline and foster healthy pollinator populations. These approaches often involve integrating ecological principles into agricultural practices (Klein *et al.*, 2017).

- 1. Creating and Restoring Habitat: One of the most effective ways to support pollinators is by providing diverse floral resources and nesting sites. This includes:
 - Planting Pollinator Strips: Establishing strips of native wild-flowers and flowering plants along field edges, hedgerows, or within agricultural landscapes provides continuous sources of nectar and pollen throughout the

growing season.

- Diverse Cover Cropping: Using flowering cover crops between main harvests can offer forage and improve soil health.
- Maintaining Natural Areas: Preserving existing patches of natural habitat, such as woodlands, wetlands, and uncultivated areas, provides crucial refuges and resources.
- Providing Nesting Sites: For solitary bees, this can mean leaving bare ground, dead wood, or creating "bee hotels."For bumblebees, undisturbed grassy tussocks or old rodent burrows are important.
- 2. Reducing Pesticide Use and Promoting Integrated Pest Management (IPM):

Minimizing exposure to harmful chemicals is paramount.

- Targeted Application: Using pesticides only when necessary and targeting specific pests, rather than broadspectrum spraying.
- Selecting Less Harmful Alternatives: Prioritizing pesticides

- with lower toxicity to pollinators.
- Timing of Application: Avoiding spraying during blooming periods when pollinators are most active.
- Integrated Pest Management (IPM): Implementing a holistic approach that combines biological controls (e.g., natural predators), cultural practices (e.g., croprotation), mechanical methods, and selective chemical use to manage pests while minimizing environmental impact.
- Promoting Organic Farming: Organic practices generally prohibit synthetic pesticides and prioritize biodiversity.
- 3. Diversifying Cropping Systems: Moving away from monocultures towards more diverse farming systems can benefit pollinators.
 - Crop Rotation: Rotating different crops provides a varied landscape and breaks pest cycles.
 - Intercropping: Planting multiple crops together in the same field can increase floral diversity.
 - Agroforestry: Integrating trees and shrubs into farming systems can provide additional habitat and forage for pollinators.
- **4.** Education and Awareness: Raising awareness among farmers, landowners, and the public about the impor-

tance of pollinators and the threats they face is crucial. This can involve:

- Training Programs: Educating farmers on pollinator-friendly farming practices.
- Public Outreach: Encouraging home gardeners to plant pollinator-friendly plants and reduce pesticide use in their yards.
- Citizen Science: Engaging the public in monitoring pollinator populations.
- 5. Policy and Research:
 Government policies and continued research are essential for large- scale conservation efforts.
 - Pollinator Protection Policies: Implementing regulations that restrict harmful pesticide use or incentivize pollinator habitat creation.
 - Research Funding: Investing in studies to better understand pollinator ecology, the causes of decline, and effective conservation strategies.
 - International Cooperation: Addressing pollinator decline requires global efforts due to their migratory nature and the interconnectedness of food systems.

Conclusion

Their contributions to agricultural productivity, dietary diversity, and economic stability are immeasurable. The alarming decline in pollinator populations,

driven by habitat loss, pesticide use, climate change, disease, and invasive species, poses a direct threat to food security and the health of our planet.

However, this challenge also presents an opportunity. By recognizing the critical role of these unsung heroes and implementing proactive conservation strategies, we can foster resilient agricultural ecosystems and secure a sustainable food future. From planting pollinatorfriendly habitats and reducing pesticide reliance to adopting diversified farming practices and supporting relevant policies, every action, big or small, contributes to the larger effort. Safeguarding pollinators is a shared responsibility - for farmers, consumers, governments, and researchers' alike. Investing in pollinator health is not just an environmental choice; it is an investment in our collective health, economy, and the future of food on Earth.

References

- 1. Aizen, M. A., L. A. Garibaldi, S. A. Cunningham, and A. M. Klein. (2008). How much does a griculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588.
- 2. Bayer Global. (n.d.). Economic value of Pollinators. Retrieved from https://www.bayer.com/en/agriculture/article/economic-value-pollinators
- 3. CenterforFoodSafety.(n.d.). ImpactsontheFoodS u p p l y. Retrievedfrom https://www.centerforfoodsafety.org/issues/304/pollinator-protection/impacts-on-the-food-supply
- 4. Food and Agriculture Organization of the United Nations (FAO). (n.d.). Pollination services. Retrieved from

- https://www.fao.org/ pollination/background/en/ (General reference, specific link for exact value not found in initial search but broadly cited)
- 4. Forbes. (2019, October 14). The Value Of Pollinators To The Ecosystem And Our Economy. Retrieved from https://www.forbes.com/sites/bayer/2019/10/14/the-value-of-pollinators-to-the-ecosystem-and-our-economy/
- 5. Garibaldi, L. A., Carvalheiro, L. G., Vaissière, B. E., et al. (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 352(6281), 60–65.
- 6. Insect Lore. (n.d.). Important Facts about Pollinator Decline. Retrieved from https://www.insectlore.com/blogs/butterflies/important-facts-about-pollinator-decline
- 7. Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Greenleaf, H. (2007). Importance of crop pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313.
- 8. Pollinator.org.(n.d.). A b o u t Pollinators. Retrieved f r o m https://www.pollinator.org/ pollinators
- 9. U.S. Fish & Wildlife Service. (n.d.). Pollinators benefit agriculture. Retrieved from https://www.fws.gov/initiative/pollinators/pollinators-benefit-agriculture
- 10. World Economic Forum. (2019, December 9). 75% of crops depend on pollinators they must be protected. Retrieved from https://www.weforum.org/stories/2019/12/protect-pollinators-foodsecurity-biodiversity-agriculture/

Agriculture

Peer Reviewed

Sustainable Agriculture Challenges and the Way Forward: Fostering a Green Future

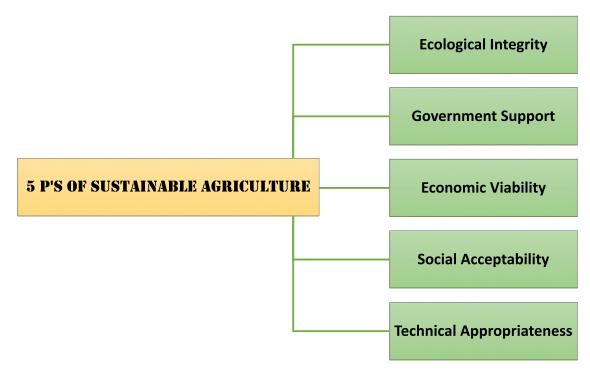
Varnit Agarwal* and Dr. R.S. Sengar

Sustainable agriculture is an essential paradigm shift in modern farming practices. As conventional agriculture faces challenges such as soil degradation, water depletion, and biodiversity loss, sustainable agriculture emerges as the muchneeded alternative to ensure the long-term health and productivity of our ecosystems. This article explores the concept of sustainable agriculture, its principles, and the challenges it faces. Furthermore, it outlines a detailed roadmap for promoting sustainable agriculture and fostering a greener and more sustainable future.

1. Ecological Integrity

Sustainable agriculture practices revolve around conserving natural resources such as land, water, and genetic diversity of plants and animals. This ensures that the environment remains non-degraded and supports diverse ecosystems. Sustainable practices aim to maintain soil fertility, prevent erosion, and preserve the natural habitat of local flora and fauna.

2. Government Support


Successful implementation of sustainable agriculture practices requires robust support from the government. Policymakers need to facilitate institutional changes, provide access to modern technologies, and ensure the enforcement of regulations that promote sustainable farming.

3. Economic Viability

Sustainable agriculture should be economically viable for farmers. By promoting efficient resource use, reducing production costs, and providing financial incentives, farmers can transition to sustainable practices without compromising their livelihoods.

4. Social Acceptability

For sustainable agriculture to be successful, it must be socially

The Five Principles of Sustainable Agriculture

College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India. *Email of corresponding author: varnitagarwal99@gmail.com

acceptable to farmers and the wider community. Educating farmers about the benefits of sustainable practices and involving them in decision-making processes fosters greater acceptance and participation.

5. Technical Appropriateness

Sustainable agriculture practices must be technologically appropriate and adaptable to local conditions. This requires continuous research and development to improve and customize sustainable practices to diverse agro-climatic regions.

The Three Pillars of Sustainable Agriculture

1. Economy

Sustainable agriculture practices aim to make farming economically viable and profitable for farmers. By adopting sustainable practices, farmers can reduce their reliance on costly inputs such as chemical fertilizers and pesticides, leading to overall cost savings.

2. Society

Sustainable agriculture ensures the availability of sufficient food for the growing population while also creating employment opportunities for local communities. The focus on healthier crops and reduced environmental pollution contributes to overall public health.

3. Environment

The environment is at the core of sustainable agriculture. By reducing the use of harmful chemicals, conserving water resources, and preserving natural habitats, sustainable agriculture helps protect biodiversity and maintain ecological balance.

Major Sustainable Agriculture Practices

1. Crop Rotation and Crop Diversity

Crop rotation involves alternat-

ing different crops in a particular field over successive seasons, reducing the risk of pest and disease buildup. Crop diversity promotes healthier soils and enhances natural pest control.

2. Water and Energy-efficient Irrigation Techniques

Smart irrigation techniques, such as drip and sprinkler irrigation, optimize water use, minimize wastage, and conserve precious groundwater resources. Integrating solar power in water pumping reduces dependence on fossil fuels.

3. Reducing or Eliminating Tillage

No-till or reduced-till methods reduce soil disturbance, minimize erosion, and preserve soil structure, which is crucial for nutrient retention and water infiltration.

4. Integrating Livestock and Crops

Combining crop and livestock production creates a symbiotic relationship. Livestock can feed on crop residues and byproducts, providing natural fertilizer for the crops, while crop residues can be used as feed for animals.

5. Adopting Agroforestry

Planting trees in agricultural landscapes helps in conserving soil, mitigating climate change, and providing additional income streams for farmers through timber, fruits, or non-timber forest products.

6. Growing Cover Crops

Sowing cover crops during fallow periods protects soil from erosion, enhances soil fertility, suppresses weeds, and improves soil structure, leading to reduced need for chemical fertilizers.

7. Integrated Pest Management (IPM)

IPM involves using a combination of cultural, biological, and chemical control methods to manage pests effectively while minimizing their impact on the environment.

Sustainable agriculture in India

Despite the vast potential of sustainable agriculture in India, its adoption remains relatively low. Several challenges hinder the widespread adoption of sustainable practices:

1. Awareness and Education

Many farmers are unaware of sustainable agriculture practices and their benefits. Outreach and educational programs must be developed to raise awareness and provide training on sustainable practices.

2. Financial Constraints

Transitioning to sustainable practices may require initial investments, which can be financially challenging for small and marginalized farmers. Financial support and incentives are needed to facilitate this transition.

3. Traditional Mindset

Convincing farmers to shift from conventional practices that offer immediate benefits can be challenging. Demonstrating the long-term benefits and success stories of sustainable farming can help change mindsets.

4. Lack of Infrastructure

Limited access to resources like water, quality seeds, and technical support can hinder the adoption of sustainable practices, especially in remote rural areas.

5. Climate Change

Changing weather patterns and increased climate variability can impact the success of sustainable practices. Adaptation strategies need to be developed to address these challenges.

To address these challenges and promote sustainable agricul-

ture, the Indian government launched the National Mission for Sustainable Agriculture (NMSA) in 2014-15. The mission aims to enhance agricultural productivity in rainfed areas, promote integrated farming systems, and optimize water resources for better crop yields.

The Way Forward: Overcoming Challenges and Building a Sustainable Future

To ensure the successful adoption of sustainable agriculture practices, a comprehensive approach is required:

1. Government Support

The government should provide financial incentives, subsidies, and technical support to encourage farmers to adopt sustainable practices. Policies should prioritize sustainable agriculture and support research and extension services.

2. Awareness and Education

Awareness campaigns, workshops, and training programs should be organized to educate farmers about the benefits of sustainable agriculture and provide them with the necessary knowledge and skills.

3. Research and Development

Investments in research and development of location-specific sustainable farming practices will lead to more efficient and effective techniques.

4. Strengthening Infrastructure

Improving access to resources like water, quality seeds, and technology will facilitate the transition to sustainable agriculture.

5. Climate Resilience

Developing climate-resilient farming practices will help farmers adapt to changing weather patterns and mitigate the impacts of climate change.

6. Public-Private Partnerships

Collaborations between governments, private companies, NGOs, and research institutions can facilitate the adoption of sustainable practices and ensure their successful implementation.

Sustainable agriculture is an important step towards preserving our environment and ensuring that the world's growing population has sufficient food. Conventional farming practices, which are highly resourceintensive, can deplete topsoil, lower groundwater levels, and diminish biodiversity. As an alternative, sustainable agriculture practices focus on using resources more efficiently, diversifying crops and livestock, and adapting farming strategies to suit local conditions.

The popularity of organic food and the growing interest in fitness and wellness has brought

sustainable agriculture practices into the limelight. These practices, however, are more than just a marketing strategy. They are an urgent necessity for preserving our planet and promoting healthier and more sustainable ways of life for future generations. Sustainable agricultural development involves the careful management and conservation of natural resources. Technological and institutional changes are tailored to meet the needs of present and future generations in a manner that conserves land, water, plant, and animal genetic resources. Sustainable agriculture is also environmentally friendly, technically suitable, economically viable, and socially acceptable.

Five key principles underline sustainable agriculture practices: enhancing the efficiency of resource use, maintaining rural viability, protecting and improving rural infrastructure,

minimising adverse impacts on the environment, and improving the resilience of farming systems. Government support is crucial for implementing these principles effectively.

There are many benefits to sustainable agriculture practices, including the protection of natural ecosystems, maintenance of soil integrity, support for biodiversity, reduction of water and air pollution, and conservation of non-renewable resources. Economically, these practices provide long-term food security, reduce production costs for farmers, and reduce dependence on fossil fuels. From a societal perspective, they promote equality and public health by reducing chemical contamination and environmental pollution. The use of technology in sustainable agriculture helps monitor ongoing processes and manage the future of crops. It ties together the objectives of continuous food production, welfare of food producers, and preservation of non-renewable resources.

In India, sustainable agriculture practices are crucial for securing the country's nutritional $% \left(\frac{1}{2}\right) =\left(\frac{1}{2}\right) ^{2}$ needs in a world constrained by climate change. Despite their importance, however, the coverage of these practices in India remains low. For instance, only a small number of farmers have adopted practices such as crop rotation, agroforestry, and rainwater harvesting. The National Mission for Sustainable Agriculture was launched in 2014-15 to boost the adoption of sustainable agriculture practices in India.

Sabka Sath- Sabka Vikas-Sabka Prayas- Sabka Vishwas.

The idea of sustainable development, encapsulated by the Indian Prime Minister's slogan "Sabka Sath-Sabka Vikas" (Collective Effort-Inclusive Growth), is an integral part of India's national development agenda. The implementation of the Sustainable Development Goals (SDGs) in rural India through Panchayati Raj Institutions is an important part of this agenda.

The concept of sustainable development is the idea of meeting the needs of the present without compromising the ability of future generations to meet their needs. The SDGs are a set of goals, targets, and indicators that have been jointly set by 193 countries. They are intended to end poverty, protect the planet, and ensure prosperity for all by 2030.

In India, where about 65% of the population lives in rural areas, Panchayati Raj institutions (PRIs) are a critical component of local self-governance. The PRIs, which have achieved last-mile connectivity in executing various schemes, are expected to play a key role in achieving the SDGs. The Rashtriya Gram Swaraj Abhiyan (RGSA) scheme has been designed to capacitate elected representatives and functionaries of PRIs to deliver on the SDGs. The twin objectives of the Panchayati Raj System are to ensure local economic development and social justice. These objectives align closely with many of the SDGs. Hence, the Gram Panchayats across the

country play a significant role in the attainment of the SDGs.

As we strive to achieve these ambitious goals, it's important to remember that there is no "one size fits all" approach. The localization of the SDGs is a critical lever in this process. The integration of the social capital that exists in women's collectives and the local self-governance of the Panchayati Raj system is essential. The achievement of the SDGs will require transformative economic, social, and environmental solutions. It will require inspiration and creativity from all sectors of society, including national and local governments, civil society, the private sector, academia, and youth. By prioritizing sustainable agriculture practices and localizing the SDGs, we can work towards a more sustainable and equitable future for all.

With this an understanding can be generated that sustainable agriculture is not a mere option; it is a necessity for the well-being of our planet and future generations. By embracing and promoting sustainable practices, we can build a greener, healthier, and more prosperous future. Governments, farmers, researchers, and consumers must work together to make sustainable agriculture the norm rather than an alternative. With collective efforts, proper support, and a commitment to change, we can foster a sustainable agricultural revolution that benefits both people and the planet. Sustainable agriculture is the key to a brighter, more resilient, and sustainable future for all.

Agribusiness

Peer Reviewed

Bihar's Farming Boon: The Rise of Makhana

Monika Jha, DP Semwal, S.K. Yadav and Praveen Kumar Singh*

About Makhana

Makhana (Euryale ferox Salisb.), commonly known as foxnut, prickly water lily, or black diamond, is a pantropical aquatic flowering plant. This aquatic herb belongs to the family Nymphaeaceae. Euryale is a monotypic genus, exhibiting either an annual or perennial life cycle depending on environmental conditions. The entire plant, except for the roots, is covered with spines. It produces two distinct types of flowers: cleistogamous (self-pollinating, non-opening) and chasmogamous (open, crosspollinating). The flowers are solitary, large in size, and emerge in an asynchronous manner. The fruit is a hard, spiny berry containing globose, hard, and rounded seeds. It is typically cultivated in stagnant, perennial water bodies such as ponds, land depressions, oxbow lakes, swamps, and ditches, with an ideal water depth ranging from 4 to 6 feet. Makhana is believed to be native to Southeast Asia and China. In India, its cultivation is predominantly concentrated in Bihar, which accounts for approximately 80% of the total cultivated area and nearly 90% of the country's makhana production.

Background

The Kosi River, often referred to

as the "Sorrow of Bihar," is infamous for its recurrent and destructive flooding. Its high sediment load leads to significant silt deposition, causing the river to frequently alter its course. This geomorphological behavior has resulted in substantial human displacement and economic losses. A notable example is the 2008 flood, which affected approximately 2.3 million people and inundated extensive tracts of agricultural land. Although embankments have been constructed to manage the river's flow, they often exacerbate flood risks by restricting the channel, leading to increased water levels and pressure due to silt accumulation. Despite its associated challenges, the Kosi River plays a vital role in supporting agriculture in Bihar. The river's alluvial deposits significantly enhance soil fertility, rendering the region highly suitable for the cultivation of crops such as rice, maize, and jute. Moreover, communities residing within the Kosi River basin have developed indigenous knowledge systems that enable the sustainable utilization of its resources, particularly for fishing and agriculture.

Relation of flood and Makhanain Bihar

Flooding creates optimal ecological conditions for the cultivation

of Makhana (*Euryale ferox* Salisb.). In regions such as Mithilanchal, the primary makhana-producing area, seasonal floods naturally replenish and sustain stagnant, shallow water bodies, including ponds and wetlands. These floodfed wetlands function as natural makhana farms, requiring minimal external inputs and irrigation. Farmers in these floodprone districts of Bihar, including Darbhanga, Madhubani, and Saharsa, have traditionally adapted to these post-flood aquatic environments, utilizing them effectively for makhana cultivation. The nutrient-rich alluvial soil deposited by floodwaters further enhances plant growth. As the need for climateresilient agriculture increases, Makhana is gaining recognition as a climate-smart crop. Additionally, the adoption of advanced makhana cultivation techniques, particularly in lowlying fields, has proven to significantly enhance farmer's profitability.

Traditional and Nontraditional area of Makhana cultivation

Makhana is primarily cultivated in the northern regions of Bihar, a state located in eastern India. This region has traditionally been the epicentre of makhana production and continues to play a dominant

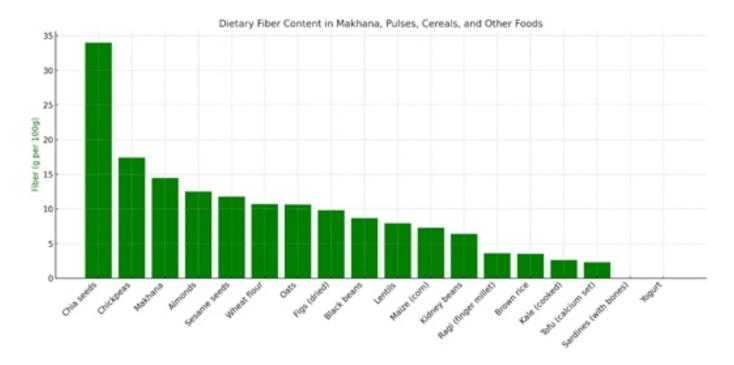


Fig. 1: Comparative chart of Fiber content in Makhana and other fibre rich food

role in the industry. Approximately 90% of the total national production of makhana originates from this traditional cultivation belt, which comprises around eight to ten districts in northern Bihar. These districts possess favourable agro-climatic conditions, abundant water resources, and traditional knowledge that contribute significantly to the successful cultivation of the crop. Secondary, non □ traditional cultivation zones include Jammu & Kashmir, Assam, West Bengal, Manipur, Tripura, eastern Odisha and Uttar Pradesh.

Nutritional benefit of Makhana

Makhana is a nutrient-dense superfood increasingly recognized as a functional food due to its rich macronutrient and micronutrient profile. It is particularly valued for its high-quality protein, supported by an essential amino acid index (EAAI) of around 93%, indicating

an excellent amino acid balance. Rich in methionine, leucine, isoleucine, cysteine, glutamine, and arginine, makhana supports protein synthesis, metabolic function, and immune health. It is also rich source of fibers (approx. 14.5g), making it a strong contender among superfoods (Fig. 1).

Health benefits of Makhana

Makhana seeds are a rich source of bioactive compounds, including polyphenols, flavonoids, dietary fiber and antioxidants. These constituents contribute to several health-promoting effects, such as antidiabetic, hepatoprotective, anticancer, antifatigue, and antioxidant activities (Table 1).

Government Initiatives and Support for Makhana

To promote makhana cultivation, various government initiatives have played a pivotal role. Key schemes include the **Pradhan**

Mantri Krishi Sinchayee Yojana (PMKSY) for irrigation support, the National Mission on Sustainable Agriculture (NMSA) for advancing climate-resilient water-based farming systems, Operation Greens for post-harvest processing and value-chain development, and the Makhana Vikas Yojana, which provides training and financial assistance to farmers.

In the Union Budget 2025-26, the Union Finance Minister, Nirmala Sitharaman, announced the establishment of a dedicated Makhana Board. This board is intended to streamline production, enhance processing and value addition, support marketing efforts, and boost exports. Additionally, the establishment of the National Makhana Research Centre in Darbhanga, Bihar, is expected to focus on the development of high-yielding varieties, mechanization of processing, sustainable

Table 1: Various bioactive compounds in Makhana and their health benefits

Bioactive compound	Plant parts used for extraction	Pharmacological properties	
Pentacyclic triterpenes	Seeds	Anti-diabetic activity	
Nucleosides and nucleobases (Inosine, thymidine, uridine, 2'-deoxyguanosine, 2'-deoxyuridine, xanthine, thymine, adenine, cytosine)	Seeds	Anti-cancer activity	
Cerebrosides (Ferocerebroside A & B) Tocopherol p olymers (Ferotocotrimer C, D, A & E)	Seeds	Antioxidant activity	
Sesquineolignans (Euryalin A, B & C)	Seeds	Diabetic nephropathy	
Polyphenols (5,7,4-trihydroxyflavanone Buddlenol E 5,7-dihydroxy-2- (3,4,5 trihydroxyphenyl) chroman -4-one)	Seeds	Anti-fatigue activity	
Glycosylsterols (2,2E-dienyl-3β-O-pyranoglucoside 24-ethylcholest-5-enyl-3β-O-pyranoglucoside 24-methylcholest-5-enyl-3β-O-pyranoglucoside 24-ethycholesta-5)	Seeds	Cardioprotective activity	
Source: Mittal et al., 2020			

water management practices, and capacity building for farmers. Furthermore, the conferral of the Geographical Indication (GI) tag to "Mithila Makhana" on 29th April, 2022 has significantly enhanced its recognition in

national and international market.

References:

Kumar D and Singh D B (2020). Nutritional composition and health benefits of makhana (*Euryale ferox* Salisb.): A review. Journal of Pharmacognosy and Phytochemistry, 9(5), 1424–1430.

Mittal R, Sharma S and Mittal A (2020). A Critical review on Ethnobotanical and Pharmacological aspects of Euryale Ferox Salisb. Pharmacognosy Journal, 12(6), 1444-1454.

Environment

Peer Reviewed

Water Footprint: Awareness to Action

Pooja Gupta

India is recognized globally for its advancements in the "Digital India" initiative; however, it faces significant challenges, particularly regarding water resources. With merely 4% of the world's freshwater available for 16% of the global population, water scarcity and diminishing water levels have emerged as critical concerns. According to a report by NITI Aayog, it is projected that by 2030, nearly 40% of India's population may lack access to drinking water. The ongoing water crisis Bengaluru – attributable to insufficient monsoon rainfall, the over-extraction of groundwater, and ineffective resource management-illustrates the gravity of this issue. Addressing this issue is no longer a choice but an imperative, as water is not merely a resource but essential for survival.

Furthermore, water utilization extends beyond basic needs. The concept of the water footprint, encompassing both visible and virtual water consumption, provides insight into how human consumption practices impact natural resources. Virtual water, often called 'hidden' water, denotes the water embedded within daily products and services consumed. India

accounts for 12% of the global water footprint, amounting to 987 Gm³ annually. Although countries such as the United States and several European nations exhibit higher water footprints, India is increasingly nearing these figures due to its growing population and evolving lifestyles.

Water Footprint

The water footprint concept encompasses the total volume of freshwater utilized in producing goods and services consumed by individuals or communities. This measurement includes direct consumption, such as drinking water and sanitation, and indirect usage manifested through manufacturing and agricultural processes. The water footprint analysis provides valuable insights into water usage patterns, which can inform strategic initiatives to achieve efficient and sustainable water management. Actions such as improving agricultural practices, minimizing domestic water waste, and optimizing industrial production processes can substantially reduce the overall water footprint.

Virtual Water and Its Implications

Virtual water constitutes a significant aspect of everyday

consumption. For example, the production of one kilogram of rice necessitates approximately 2,500 litres of water, whereas the manufacture of a single cotton shirt requires about 2,700 litres. Furthermore, the increasing digitalization of services contributes to the concealed water footprint; data centers, which play a crucial role in supporting the digital economy, consume substantial quantities of water for cooling operations. If goods and services are analysed in terms of water consumed, the figure would be alarming.

In 2008, Coca-Cola took a pioneering step by introducing water footprint analysis - a method that evaluates the total volume of freshwater utilized in the production of its products. This analysis aims to improve water management practices and reduce the overall water consumption linked to manufacturing processes. In India, similar approaches have been increasingly embraced to understand and alleviate water usage. A notable study conducted in the states of Gujarat and Madhya Pradesh compared organic and conventional cotton farming practices. The results revealed that organic farming significantly reduces water footprints, primarily by eliminating pollution from pesticides, which consequently helps to preserve local water quality and availability.

Agriculture is the dominant consumer of water in India, using about 80-90% of the country's freshwater resources, in stark contrast to the 5-12% allocated for industrial purposes. This disproportionate allocation is compounded by inefficient irrigation methods, such as flood irrigation, and the cultivation of waterintensive crops like rice. Studies have shown that as agricultural water use escalates, it outpaces the population growth rate, signifying an urgent need for comprehensive reforms in water management and irrigation practices.

The severity of water scarcity in India is exemplified through extensive research on various river basins across the country. For example, within the Ganges basin, approximately 450 million individuals experience severe water shortages for up to five months each year. This chronic scarcity poses significant challenges for both drinking water availability and agricultural productivity. Meanwhile, the Indus River basin, another crucial agricultural area, suffers from eight months of water scarcity annually. This prolonged lack of water severely impacts agricultural output, threatening food security and limiting access to safe drinking water. While India's per capita water footprint is lower than that of many nations, the absolute amount of water used, coupled with unsustainable agricultural practices, makes the situation urgent.

Strategies for Reducing Water Footprint

1. Efficient Irrigation Techniques

Implementing advanced irrigation systems, such as drip and sprinkler irrigation, can lead to water savings of 30-70% compared to traditional irrigation methods. These systems not only conserve water but also promote healthier crop growth by providing consistent moisture levels. Studies conducted in Punjab and Maharashtra have shown that the adoption of micro-irrigation methods resulted in significant reductions in water usage while simultaneously enhancing crop yields, showcasing a viable path toward improving agricultural water efficiency.

2. Crop Diversification

Encouraging farmers to shift towards less water-intensive crops, such as millets and pulses, instead of rice and sugarcane can significantly relieve pressure on water resources. This approach not only conserves water but also enhances soil health and agricultural resilience. Research conducted in the agriculture sector has demonstrated that transitioning to millet cultivation can reduce the agricultural water footprint by nearly 50%, highlighting the benefits of diversified cropping systems.

3. Industrial Recycling and Reuse

Promoting practices for greywater reuse and industrial water recycling can drastically reduce the freshwater dependency of urban areas. This approach is vital for managing water scarcity in rapidly urbanizing populations. A pilot project in Chennai's industrial zones exemplified this strategy, achieving a remarkable 40% reduction in freshwater usage through the implementation of effective recycling mechanisms, thereby serving as a model for similar initiatives nationwide.

4. Community Awareness and Action

Grassroots campaigns that emphasize the importance of rainwater harvesting, pollution prevention, and overall water conservation can mobilize local communities to act. These initiatives foster a culture of sustainability and local stewardship of water resources. Educational programs initiated by initiatives like Jal Shakti Abhiyan have empowered rural communities to adopt sustainable practices for water management, demonstrating the effectiveness of community engagement in addressing the water crisis.

5. Policy and Regulation

Establishing regulatory measures such as water footprint caps for both industries and agricultural sectors can ensure that water usage remains within sustainable limits. This regulatory framework is essential for guiding long-term water resource management strategies. Mandating regular water audits and providing incentives for low-water-use technologies encourage compliance with sustainable practices and foster innovation in water conservation efforts.

Alternative Mechanisms for Sustainability

1. Virtual Water Trade Regulations

Policymakers need to address the imbalances created by virtual water trade. Exporting water-intensive crops, such as basmati rice, places immense pressure on domestic water resources, draining them further in an already stressed situation. Introducing tariffs or restrictions on such exports would prioritize domestic water security, ensuring that local populations have sufficient access to water resources for their needs.

2. Digital Footprint Assessment

Data centers, which require significant amounts of water for cooling, represent a growing concern in urban water usage. By optimizing energy efficiency and adopting innovative cooling technologies, these facilities can substantially reduce their water footprint. A 2021 study by the Uptime Institute revealed that hyperscale data centres consume millions of litres of water annually, underscoring the urgent need for effective strategies to mitigate their impact on local water resources.

3. Revolutionizing Urban Water Systems

Urban centers should embrace decentralized water management practices, which include implementing rainwater harvesting systems and smart metering technologies to detect and prevent leaks. This innovative approach can lead to more sustainable urban water usage. For example, Mumbai's rainwater harvesting initiative has the potential to fulfill up to 20% of the

city's annual water demand, showcasing the effectiveness of integrated urban water management approaches.

Present and Future Water Usage Trends

As the population continues to grow, India's water demand is forecasted to double by 2050, with the industrial and domestic sectors responsible for a substantial portion of this increase. If current trends persist, the depletion of groundwater resources threatens to render large parts of northern India uninhabitable, with serious implications for agricultural productivity and overall quality of life. Climate change is exacerbating existing water scarcity issues through rising temperatures and unpredictable rainfall patterns. A World Bank report predicts that if global warming exceeds 2°C, freshwater availability in South Asia could decrease by 20% by 2050. This anticipated reduction poses significant challenges not only for agriculture but also for drinking water supplies and overall environmental sustainability in the region.

Encouraging individuals to embrace responsible consumption habits is crucial. By consciously reducing the use of products that consume excessive water, such as certain food items and textiles, people can significantly minimize their water footprints. This shift in behaviour fosters a collective commitment to sustainable living and helps protect our planet's precious water resources.

The rise of groundbreaking technologies offers exciting opportunities for efficient water management. For instance, solar

desalination plants harness the power of the sun to transform seawater into fresh, drinkable water, providing a sustainable alternative in water-scarce regions. Additionally, AI-driven irrigation scheduling optimizes water usage in agriculture by analysing various factors such as weather conditions and soil moisture levels, ensuring that crops receive the right amount of water without waste. Various initiatives led by governments and non-governmental organizations are making significant strides in water conservation. Programs like 'Nal Se Jal' focus on enhancing access to clean drinking water in rural communities, ensuring every individual can access this vital resource. Similarly, 'Catch the Rain' promotes rainwater harvesting, empowering communities to capture and utilize rainwater effectively, and encouraging local engagement and responsibility in conservation efforts.

Conclusion

The growing awareness of the water footprint reveals a pressing challenge that could impact future generations. Tackling this crisis will require concerted efforts at all levels—individual, community, and governmental. By adopting sustainable practices, embracing innovative technologies, and fostering awareness, we can collectively work toward achieving water security. The task of reducing our direct and virtual water footprint is not merely an environmental concern; it is a moral obligation that we all share.

"Every drop counts – let us unite to safeguard this vital resource for future generations."

मौलश्री देवी पोषण वाटिक के प्रयास

प्रो. एच. एस. श्रीवास्तव फाउंडेशन फॉर साइंस एंड सोसाइटी के धारणीय कृषि एवं पर्यावरण केंद्र के द्वारा बाराबंकी जिले में देवा ब्लॉक के अकटिहया गांव में पौध वितरण किया गया जिसमें आम, अनार, नींबू, अमरुद, केला, पपीता, नाशपाती, आंवला, बेल, सहजन, जामुन,लीची तथा जामुन आदि फलदार वृक्ष वितिरत किये गए। इस पौध वितरण में संस्था के महासचिव प्रोफेसर राणा प्रताप सिंह, इमेरिटस वैज्ञानिक, श्री मिराजउद्दीन, कार्यक्रम प्रबंधक श्री आशीष सिंह, कार्यक्रम समन्वयक श्री पवन कुमार और प्रशासनिक अधिकारी श्री कृष्णानन्द सिंह सिंहत गाँव के कुछ युवा और वयस्क लोग भी इस कार्यक्रम में सिम्मिलित हुए।

PROF. H. S. SRIVASTVA FOUNDATION FOR SCIENCE & SOCIETY

Office No. 04, 1st Floor, Eldeco Xpress Plaza, Uttrathia Raebareli Road, Lucknow

Website::www.phssfoundation.orgEmail:phssoffice@gmail.com

Professor H. S. Srivastava Foundation for Science and Society is a national academic, non-profit voluntary organization registered under the society Act 1860, in Lucknow.

A) CENTRE FOR SUSTAINABLE AGRICULTURE AND ENVIRONMENT-

- A Research and Development Centre of the Foundation, 'Centre for Sustainable Agriculture and Environment' is working for the basic and translational research in these fields, Science Communication, Development of women and youth leadership and poverty elimination in the rural and peri-urban societies.
- The financial support is earned through the royalty, donation and sponsorship

B) Publication of International Research Journals-

• The Foundation is publishing a monthly research journal Physiology and Molecular Biology of Plants (PMBP; Clarivate JCR Impact Factor 3.3) in collaboration with Springer Nature from 2002 which was started in 1995 by another society.

C) Conferences, Seminar and Workshops-

- The Foundation is organises annual national/International conferences and periodical workshop, seminar and training programmes for scientific interaction and science communication regularly.
- An Annual National Rural Science Congress has been started from 2022 to explore the issues and challenges of sustainable rural development in India.

D) PHSS Foundation Awards-

• Five biennials' national awards are conferred to the distinct achievers in the different fields by the Foundation from 2012.

E) Popular Science Magazine-

• A quarterly Multilingual People Science Magazine Kahaar (www.kahaar.in) is published from 2014 to communicate science in general and concepts and practices of sustainable agriculture and environment in particular for college and school students and rural youth.

We invite, you all the like-minded people across the age, gender, geography, religion, and profession to join with us, collaborate and light the lamp for a better tomorrow.

